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Canonical single-reference MP
m MP2:
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Parameters: N, N (1,J--.), Ny;«(a,b...)
Integral transformation - N° step

Only minor overhead due to PT power series summation itself (N*
step)

m VIP3 and above:

Integral transformation - N° step

Intermediate quantities (amplitudes entering inte numerators of the
Individual terms of the PT series) calculations - N® and above

As in the case of MP2, PT summation itself has better scaling (e.g.,
N*for MP3)



Multi-reference (MR) MBPT
theories

m Additional parameters:

Nact(p,q,r,S,---), Ndet (Ncsf)’ NHeff
B More complex expressions both for energy
correction itself and for computational costs

Third and higher orders of various formulations of the
multi-reference (MR) MBPT

+ Calculation of various intermediates 1s the most
computationally-demanding stage
Non-contracted and partially contracted MR-MBPT
theories at second order.

+ Most of the computational efforts are typically due to
summation of the individual terms of the PT series themselves,
especially in the case of large active spaces



MCQDPT2 example

Ordering the generators in Bq (34) -to normal products with only active orbital labels, we obtain
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Previous presentation goals

B Remove Inefficient divide operations from
Inner loops

m Construct cache-friendly algorithm



Cache-friendly code sample

la| jb)[2(1a]| |b)—(ja|ib
. _ ZCBQCBﬁZ( | ib)[2(ia] jb) - (ja]ib)]
i EaTE& —&—& +AEg,

O Loop over |

Loop over |

+ Loop over a
« Caleulate t, =(1a] Jb)[2(1a] Jb)—(ja|ib)]
 Loop over B
— Caleulate A=¢g, —¢g —¢&; +AEg,

— Special sum overb: W W+Z
5 & TA

— Accumulate
» End loop over B

+ End loop over a
End loop over |

m End loop over |




Present work goals

m Further reduce computational costs

B Reduce algorithmic complexity



Formal analysis of the
computational costs

m Each particular type of terms results In
computational costs of a generic form:

Nk ‘NI .Nm+n.N

0CC virt act

-N Heff

csf

where k, I, m, n are some integers = 0

m For the particular example above, k=2, I=2,
m=n=0



Reminder - Initial code version

la| jb)[2(1a]| jb)—(Ja|ib
s-yc,.c,, 3 alib2eal jb) - (ja]ib)
5 T 5a+5b—5i—gj+AEBﬂ
m Loop over B
Loop over I

+ Loop over |
» |oop over a

ToT +Z(ia| Jb)[2(ia| jb) —(ja|ib)]

— Sum over b;
b & t& —&—¢& +AE,

* End loop over a
+ End loop over |

End loop over i
Accumulate S
m End loop over B




Code modification
S(AE,, ) Z(ial j)[2(ia| jb) - (ja|ib)]

jm  EatE — & —E; +AEBﬂ
S ="C,,Ca,S(AE,, )
B

m LoopoverB
m Loop over i
Loop over |

+ Loop over a
. : (ia] jb)[2(1a| jb)—(Ja|ib)]
Sumoverb: T=T +Z s A
b e T j BA

+ End loop over a
End loop over |
m End loop over i, accumulate S(AEBﬂ)
m End loop over B




AEBﬂ expression
AEg, =E,—E,

EB — Ec:ore T Zni(B)gi

active
orbitals

E, =Z\c§\2EB
B

Conclusion: AEB g vary over known limited range
of energies defined only by the active orbitals energy
differences and number of electrons in active space.



Next steps, key Ideas

m Let us approximate S(AE,,) using table-
driven interpolation

Introduce Intermediate equally-spaced helper
gridof A, , A=1..Ng

Calculate S(A,), A=1..Nyq using the definition
given above and previously described efficient
approach

Fill in/interpolation tables

Calculate contributions to S using interpolated
values of S(AEBﬁ); S(AEBﬂ, Interpolation tables)



Resulting code

m Loop over |

Loop over |
+ Loop over a
» Calculate &, =(1a| Jb)[2(1a] jb)—-(Ja|ib)]

» Loop over A
— Calculate A=&,—&—¢& TA,

— Special sum over b: W =W +
— Accumulate S(Ai)

e End loop over A
+ End loop over a

End loop over |
m End loop over |
m Fill ininterpolation tables
m Loop over B: accumulate S: S =S +C,,C,, - Interp(AE,, )



Formal analysis of the
computational costs, new code

m Original code:

costs = N2 -N2.-N

0cC virt

-N Heff

csf

B New code;

COSLtS = N2 ’N2 Ngrid ""C'Ncsf 'NHeff

0cC virt



Formal analysis of the
computational costs, generic case

m Main result:
K I m-+n
Nocc ' I\Ivirt ' Nact ' Ncsf ' NHeff

m IS replaced by:

N .N! °Nm+n‘Ngrid+C’Nn Ncsf.NHeff

0cC virt act act

m N = 0 for zero-body, 2 for one-body, 4 for
two-body, and 6 for three-body terms.



Conclusions

m N,y does not depend on the number of CSF
and 1s defined only by the desired precision
and by the structure of the active space

Computational costs dependence on the number
of CSF Is now efficiently decoupled from the
dependence on the number of orbitals

Improved algorithmic complexity

Computed energies are smooth functions of
external parameters

No more need to store transformed integrals,
only interpolation tables need to be computed

Much faster calculations for large systems!




Main problem

m Q: How to interpolate S(AE,,) which can
have multiple singularities?

m A: Actually, we always use ISA (Intruder
State Avoidance) or some other energy
denominators shift technigue to avoid
singularities. In the case of ISA,
denominators are transformed as follows:

a a

%
b,

b
so that s(ag,,) Is Infinitely smooth function




Singularity removal by use of the
ISA technique




examp




Practical experience

m Seven-point polynomial interpolation
seems to be optimal

m N,y Of ca. 200400 (AE of ca. 0.05 a.u.)
seems to be enough to get cumulative
absolute errors less than 10 a.u., which is
for large problems in any case a way
smaller than the round-off errors and errors
Introduced by the use of non-completely
converged CASSCEF orbitals.



Sample calculatlon

m Retinal molecule

B cc-pV I Z basis set, 1465 cartesian/1298
spherical basis functions

m CAS(12/12), 226512 CSF
B Nppeg=10




PC GAMESS, standard vs. table-
driven approach

m January 2006

m Intel Xeon Dempsey 3.2
GHz

m CSF selection, 24709 CSF
selected

B 95546 minutes of CPU
time for PT

m E=-989.7676571

October 2006, pilot code
(production code will be
much faster)

Intel Xeon Woodcrest 2.67
€] g 4

No CSF selection, all
226512 are used

8650 minutes of CPU time
for PT (5293 minutes with
CSF selection)

E=-969.76763871



Note: Any Implementation of
the code either completely or
partially based on the ideas
given In this presentation Is
strongly prohibited for any
programs which are not
distributed In source form
according to the terms of GNU
GPL version 2.0 or above.




I'hank you 1or your attention'!
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