New efficient large-scale fully
asynchronous parallel algorithm
for calculation of canonical MP2

energies.

Alex A. Granovsky

Laboratory of Chemical Cybernetics, M.V. Lomonosov

Moscow State University, Moscow, Russia
May 10, 2003

m Preface
m Serial MP2 energy code
Parallelization problems
P2P communication Interface

Parallel M

m Sample ap

Outline

P2 energy code

lications

Notation

m N - number of AO basis functions

B C - number of core orbitals

H N - number of occupied orbitals, n << N
m V - number of virtual orbitals
mV=N-n-c=N

mijen

mabeV

mpQgrseN

MP?2 energy correction formula

z((ia| jb)—(ib] ja))

mw £ +E;—E,—E

ECOFF — E
A

B Basically, the problem of integral transformation.

m Only integrals of the internal exchange type are
required.

B [0 evaluate energy, It Is necessary to have both
(1al[b) and (iblja) Integrals at the same time.

EXxisting approaches

m Memory requirements:
N* (Saebo, Almlof 1989)

N3 (Head-Gordon et al. 1988, Dupuis et al. 1994)
N2 (PC GAMESS 1997, Pulay et al. 2001)

m AO Integrals permutation symmetry usage:
Eightfold (Dupuis et al. 1994, Schutz et al. 1999)

Fourfold (Head-Gordon et al. 1988)
Twofold (Saebo, Almlof 1989)

m Parallelization:

Over one Index (Dupuis et al. 1994, Nielsen, Seidl
1995)

Over index pairs (Nielsen, Seidl 1995, Baker, Pulay
2002, present work)

Our goals

m Large systems => N2 memory.

m Minimal number of floating point (FP)
operations.

B Extensive use of the efficient matrix-matrix
multiplication routine (dgemm).

m Efficient use of disk I/O and minimal
sorting overhead, good CPU usage.

m Scalability and high degree of
parallelization => parallel over index pairs.

Two pass MP2 energy code In
the PC GAMESS - main features

m Has only O(N?) memory requirements.

m Direct In the sense that AO integrals are
evaluated as needed.

m AO Integrals are always recomputed four
times.

m Uses disk storage: O(n?N?) disk space
required.

B Uses minimal number of EP operations.

How 1t works:

B First pass: (pqg|rs) -> (igljs) half-transformation
IS performed for all fixed gs pairs and all 1, |J.
Presorted buffers are saved to disk in direct
access file (DAF) using sequential writes and
In memory control structures (lists of records).

B Second pass: presorted half-transformed
Integrals are fetched from the disk buffers, then
the second half-transformation Is performed:
(19Js) -> (1aljb) for all fixed 1j pairs and all g, s.
IMP2 energy correction Is accumulated.

First pass:

Initialize memory presort structures
Loop over all shells g, (q loop)

Loop over shells s4< g4, (s loop)

+ forall g in gy, and s in s, compute (pg|rs) (all p, r) using abelian
symmetry

+ store them in the (small) temporary file if no memory available to
handle all of them

+ perform first one-index transformation: (pg|rs) -> (ig|rs). Two possible

ways: either using dgemm (dense case) or using daxpy (sparse case or
high symmetry)

+ perform second one-index transformation: (ig|rs) -> (ig|js) for all 1, |
using dgemm

+ put (ig|js) and (js|ig) (i=], all g and s) inte presort buffers in memory
+ write filled presort buffers to disk, update lists ofi records numbers
End loop over s shells
End loop over g shells

Flush presort buffers to disk

One-Index transformation

m basically a sequence of matrix-matrix
multiplications:

(iglrs)=> (palrs)-C,

First one-index transformation

B Two ways: dense and sparse case:

Dense case:

+ more memory Is required to hold square N by N matrices of
AO Integrals.

+ matrix-matrix multiplication uses dgemm and is very efficient.
+ transparently multithreaded via MKL SMP support.

Sparse case:

+ Less memory is required - only N by n matrices are used to
hold guarter-transformed integrals.

+ AO Integrals are processed on the fly using daxpy.

+ Less efficient due to use of daxpy instead of dgemm => the
degree of sparsity should be high enough to compensate.

+ More problems with SMP support.

Data presorting

m After first half-transformation, we have
(1g9|Js) integrals for all I, | and fixed gs pairs.
For the second half-transformation we need

them for a fixed 1j pairs, and all g, s. Thus
the transposition of the four-index array: IS
required for the second pass.

m The PC GAMESS code uses efficient
technigue to perform this data reordering

Implicitly during first pass.

Modified Yoshimine sorting
) (implicit sorting)

Composite ij index

Buffers
(slices)
in memory

Lists of records

TI T]

Direct access file records

Second pass:

LLoop over ij slices

Loop over disk buffers from the corresponding list
+ read buffer into memory and fill matrices C® = (ig|js)

End loop over disk buffers

L_oop over ij in slice
+ transform (ig|js) to (ialjb) using dgemm & symmetry
+ accumulate E, /s,

End loop over ij in slice

End loop over ij slices

MP2, UMP2, and ROHF-MBPT2
Cases

B The implementations are very close

m MP2 and UMP2 share the first pass, In the
latter case n Is simply n +n,

B [he second pass Is identical for UMP2 and
ROHF-MBPT2 and differs slightly from
RHE case

m In the case of ROHF-MBPT2, the first pass
can be either UHF-like or can be based on
the more advanced approach.

Luciferine TZV* example,
398 b.f., 26 core, 46 occupied
orbitals; running on AMD Athlon
1200 MHz system

GAMESS DDI GAMESS PC GAMESS PC GAMESS PC GAMESS-
direct direct conventional specific code
Minimum memory 5MW(C)+173MW(S) 33MW 33MW 33MW 2.5MW
required
Memory used 5MW(C)+173MW(S) 159MW 159MW 159MW 4AMW
CPU time, sec 17074(C)+2252(S) 18857 9894 5068 2812

Total time, sec 19348 18858 9895 5652 2913

Example analysis

m The DDI-based method Is the slowest.

m T[he direct method in the PC GAMESS Is
approximately 2 times faster than that of original
GAMESS - this Is the result of Intel-specific
optimization.

B [he conventional method Is approximately 2 times
faster than direct due to integral packing.

B [he PC GAMESS specific method Is the fastest.

m It requires very small amount of memory.

m It has very good CPU usage.

Parallel code goals

m On the first pass, different gs pairs should be
distributed over nodes.

B On the second pass, different ij pairs should be
distributed over nodes.

Main problem

m During first pass, each node will produce
(19(Js) for the subset of g,s pairs and all 1,].

m During second pass, each node will need
(19(Js) for the subset of 1,] and all g,s pairs.

!]

H Each node should communicate with all
other nodes to send and recelve the data the
node will need for the second pass (parallel
sorting Is reguired).

Parallel sorting

B Explicit sorting stage should be avoided to
Improve performance.

B Parallel implicit sorting combined with the first
pass IS required to sort & properly distribute
O(n?N?)_half-transformed integrals over nodes.

Parallel sorting problem

B Node X will send data to node Y when they
will be computed by the node X => node X can
use synchronous send because It knows when

to send.

m Node X will receive data at unpredictable
moments when they will be computed by
other nodes and then delivered via inter-
connection network => node X cannot use
synchronous receive because It does not
Know When to receive.

Parallel sorting problem

m |t seems that problem cannot be solved
using standard interfaces like MPI

!]

m Parallel MP2 code reguires dedicated
execution model and communication
Interface - point to point (P2P) interface.

PP cOommunication Interrace

P2P Interface philosophy

m Point-to-point message oriented interface

m Logically separates calculations and
processing of incoming/generation of
outgoing messages

m Fully asynchronous very fast background
processing of Incoming messages using
user-provided callback routines

m Fully asynchronous very fast background
generation of outgeing messages, If required

Parallel sorting solution

B Each node should use asynchronous receive

routine
4

W |t Is necessary to use multithreaded code

B At least two threads are reqguired - first for
computations & sends (Worker) and second
to receive data (P2P receiver thread)

P2P execution model

m Initialization over MPI.

m Fully connected topology - each node
connected to all other nodes via TCP.

m Dedicated high-priority P2P receiver
thread(s).

B Recelver thread calls user callback function
to process each Incoming message (and send
response messages If necessary).

B [hread-safe Implementation. In particular,
user callback can call P2P functions as well.

Basic P2P interfaces

m P2P_Init(int nnodes, Int mynode, Int
maxmsgsize)

m P2P_Sendmessage(int dstnode, int msglen,
Int *message)

m P2P_Setcallback(P2PCB callback)
m P2P_Shutdown(void)

P2P vs. other interfaces

m The real power of P2P Is the user callback
function called from a separate thread which
has access to all node’s resources including
memory and files.

B GAMESS’ (US) DDI interface can be easily
(and more efficiently) emulated using P2P.

m MPI can be emulated over P2P but It IS
much simpler to use MPI + P2P' combo.

Dynamic load balancing over P2P

m Implementation of DLB over MPI Is not a
trivial problem

m Implementation of global shared counters
requires less than 20 lines ofi code using P2P

B High-performance asynchronous DLB

VIPZ energy coo

The most elegant solution

m Use of P2P asynchronous receive feature
with user-provided callback routine to
process incoming data (sort them and write
to the disk In the case of MP2 sorting).

Main features

m Basically the same as for sequential code.

B On the first pass, different gs pairs are
distributed over nodes (N total) either
statically or dynamically.

B Implicit parallel sorting Is performed during
first pass. O(n?N24)/ N. ... disk space is
required on each node to store half-
transformed integrals.

B On the second pass, different Ij pairs are
statically distributed over nodes.

nodes

How 1t works:

W First pass:

(pg|rs) -> (igjs) half-transformation Is performed
for the assigned (or dynamic) subset of fixed gs
pairs and all 1, j on all nodes. The half-transformed
Integrals are sent to the corresponding nodes.

Al the same time, on each node, P2P thread
recelves the subset ofi half-transformed integrals
from all nodes and puts them into presort buffers.
Presorted buffers are saved to disk in DAF using
sequential writes and In memory control structures
(lists of records).

Parallel implicit sorting, worker
) thread view

Composite ij index

Outgoing
messages
buffers
In memory

Node 1 Node 2 Node 3 Node 4

Parallel implicit sorting, P2P
thread view P20 ncomin

>

(<)

e

= < ,

o /

‘N

o

Q.

E

S -

JE =

Buffers ———— ——
(slices) Node 1 Node 2 Node 3 Node 4

In memory
Lists of records

_I

Direct access file records

How 1t works:

B Second pass:

presorted half-transformed integrals are fetched
from the disk buffers, then the second half-
transformation Is performed on each node: (ig|js) ->
(1aljb) for the assigned subset of fixed Ij pairs and
all g, s. MP2 energy correction Is accumulated.

m Finally:
the global summation of the partial contributions to
the MP2 energy from each node Is performed.

SIElINNGIECHIES

System Aspirin | Porphine | Yohimbine | o-Pinene |Cadion
Basis 6-311G**|6-31G** |6-31G** [6-311G |ccpVTZ
(3df,3p)
N 295 430 520 602 1120
C 13 24 26 10 26
n 34 57 69 28 64
Total time, |1 node 37 47 282 646 -
min. 2 nodes |19 24 147 322 1579
4 nodes |10 12 73 160 767

Pentium 111 Xeon (1024KB) 500MHz / 512MB / 25GB / Fast Ethernet

Small molecules

45 - l
4.0 i

2

3.0 //
2.5 —e— Cadion

- / —e— Pinene
2.0 S

——e— Yohimbine

Speedup

—e— Porphine
Aspirin

15

1.0 4=

Number of nodes

Large molecules:
Fullerene C,, and its dimer C,,,

BEIUENNOIECHIES
System Ci20 Ceo
Basis cc-pvVDZ | cc-pVTZ
Group D, D,
N 1800 2100
C 120 60
n 240 120
Nhodes 20 19
Distributed DAF size 771 GB 347 GB
2e integrals calculation time, sec. | 3300*4 5505*4
Total first pass CPU time, sec. 66647 57133
Second pass CPU time, sec. 36962 17937
Total CPU time per node, sec 103680 75181
Wall clock time, sec. 112697 79490
CPU usage, % 92 94.58
Node performance, MFlop/s 330 295
Performance, % of peak 66 59

Pentium 111 500MHz / 512MB / 55GB / Fast Ethernet

irgjest VIPZ calculation attarnoieed so feir
System Ci20
Basis cc-pVTZ-f
Group D2n
N 3000
C 120
n 240
Nnodes 18
Dynamic load balancing off on on
Real time data packing off on on
Asynchronous 1/0 off off on
Total FP operations count 3.24-.10" |3.32.10" |3.32.10"
Distributed data size 20TB 20TB 20TB
CPU time on master node, sec 83029 89301 95617
Wall clock time, sec. 150880 110826 95130
CPU usage, % 55 80.5 100.5
Node performance, MFlops/s 1330 1935 2320
Performance, % of peak 27.7 40.3 48.3
Cluster performance, GFlops/s 23.9 34.8 41.7

Pentium 4C with HTT 2.4 GHz / 1024MB / 120GB / Gigabit Ethernet

hank you for your attention!

	New efficient large-scale fully asynchronous parallel algorithm for calculation of canonical MP2 energies.�
	Outline
	Notation
	MP2 energy correction formula
	Existing approaches
	Our goals
	Serial MP2 energy code
	Two pass MP2 energy code in the PC GAMESS - main features
	How it works:
	First pass:
	One-index transformation
	First one-index transformation
	Data presorting
	Modified Yoshimine sorting (implicit sorting)
	Second pass:
	MP2, UMP2, and ROHF-MBPT2 cases
	Luciferine TZV* example, �398 b.f., 26 core, 46 occupied orbitals; running on AMD Athlon �1200 MHz system
	Example analysis
	Parallelization problems
	Parallel code goals
	Main problem
	Parallel sorting
	Parallel sorting problem
	Parallel sorting problem
	P2P communication interface
	P2P interface philosophy
	Parallel sorting solution
	P2P execution model
	Basic P2P interfaces
	P2P vs. other interfaces
	Dynamic load balancing over P2P
	Parallel MP2 energy code
	The most elegant solution
	Main features
	How it works:
	Parallel implicit sorting, worker thread view
	Parallel implicit sorting, P2P thread view
	How it works:
	Sample applications
	Small molecules
	Large molecules:�Fullerene C60 and its dimer C120
	Large molecules
	Largest MP2 calculation attempted so far
	Thank you for your attention!

