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NotationNotation
N N -- number of AO basis functionsnumber of AO basis functions
c c -- number of core orbitalsnumber of core orbitals
n n -- number of occupied orbitals, n << Nnumber of occupied orbitals, n << N
V V -- number of virtual orbitals number of virtual orbitals 
V = N V = N -- n n -- c c ≈≈ NN
i,j i,j ∈∈ nn
a,b a,b ∈∈ VV
p,q,r,s p,q,r,s ∈∈ NN



MP2 energy correction formulaMP2 energy correction formula

Basically, the problem of integral transformation.Basically, the problem of integral transformation.
Only integrals of the internal exchange type are Only integrals of the internal exchange type are 
required.required.
To evaluate energy, it is necessary to have both To evaluate energy, it is necessary to have both 
((ia|jbia|jb) and () and (ib|jaib|ja) integrals at the same time.) integrals at the same time.
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Existing approachesExisting approaches
Memory requirements:Memory requirements:

NN44 (Saebo, Almlof 1989)(Saebo, Almlof 1989)
NN3 3 (Head(Head--Gordon et al. 1988, Dupuis et al. 1994)Gordon et al. 1988, Dupuis et al. 1994)
NN22 (PC GAMESS 1997, Pulay et al. 2001)(PC GAMESS 1997, Pulay et al. 2001)

AO integrals permutation symmetry usage:AO integrals permutation symmetry usage:
Eightfold (Dupuis et al. 1994, Schutz et al. 1999)Eightfold (Dupuis et al. 1994, Schutz et al. 1999)
Fourfold (HeadFourfold (Head--Gordon et al. 1988)Gordon et al. 1988)
TwofoldTwofold (Saebo, Almlof 1989)(Saebo, Almlof 1989)

ParallelizationParallelization::
Over one index (Dupuis et al. 1994, Nielsen, Seidl Over one index (Dupuis et al. 1994, Nielsen, Seidl 
1995)1995)
Over index pairs (Nielsen, Seidl 1995, Baker, Pulay Over index pairs (Nielsen, Seidl 1995, Baker, Pulay 
2002, 2002, present workpresent work))



Our goalsOur goals

Large systems => NLarge systems => N22 memory.memory.
Minimal number of floating point (FP) Minimal number of floating point (FP) 
operations.operations.
Extensive use of the efficient matrixExtensive use of the efficient matrix--matrix matrix 
multiplication routine (dgemm). multiplication routine (dgemm). 
Efficient use of disk I/O and minimal Efficient use of disk I/O and minimal 
sorting overhead, good CPU usage.sorting overhead, good CPU usage.
Scalability and high degree of Scalability and high degree of 
parallelization => parallel over index pairs.parallelization => parallel over index pairs.



Serial MP2 energy codeSerial MP2 energy code



Two pass MP2 energy code in 
the PC GAMESS - main features

Two pass MP2 energy code in 
the PC GAMESS - main features

Has only O(NHas only O(N22) memory requirements.) memory requirements.
Direct in the sense that AO integrals are Direct in the sense that AO integrals are 
evaluated as needed.evaluated as needed.
AO integrals are always recomputed four AO integrals are always recomputed four 
times.times.
Uses disk storage: O(nUses disk storage: O(n22NN22) disk space ) disk space 
required.required.
Uses minimal number of FP operations.Uses minimal number of FP operations.



How it works:How it works:

First passFirst pass: (: (pq|rspq|rs) ) --> (> (iq|jsiq|js) half) half--transformation transformation 
is performed for all fixed qs pairs and all i, j. is performed for all fixed qs pairs and all i, j. 
Presorted buffers are saved to disk in direct Presorted buffers are saved to disk in direct 
access file (DAF) using sequential writes and access file (DAF) using sequential writes and 
in memory control structures (lists of records).in memory control structures (lists of records).
Second passSecond pass: presorted half: presorted half--transformed transformed 
integrals are fetched from the disk buffers, then integrals are fetched from the disk buffers, then 
the second halfthe second half--transformation is performed: transformation is performed: 
((iq|jsiq|js) ) --> (> (ia|jbia|jb) for all fixed ) for all fixed ijij pairs and all q, s. pairs and all q, s. 
MP2 energy correction is accumulated.MP2 energy correction is accumulated.



First pass:First pass:
Initialize memory presort structuresInitialize memory presort structures
Loop over all shells Loop over all shells qqshsh (q loop)(q loop)

Loop over shells Loop over shells ssshsh≤≤ qqshsh (s loop)(s loop)
for all q in for all q in qqshsh and s in and s in ssshsh compute (compute (pq|rspq|rs) (all p, r) using abelian ) (all p, r) using abelian 
symmetrysymmetry
store them in the (small) temporary file if no memory available store them in the (small) temporary file if no memory available to to 
handle all of themhandle all of them
perform first oneperform first one--index transformation: (index transformation: (pq|rspq|rs) ) --> (> (iq|rsiq|rs). Two possible ). Two possible 
ways: either using ways: either using dgemmdgemm (dense case) or using (dense case) or using daxpydaxpy (sparse case or (sparse case or 
high symmetry)high symmetry)
perform second oneperform second one--index transformation: (index transformation: (iq|rsiq|rs) ) --> (> (iq|jsiq|js) for all i, j ) for all i, j 
using dgemmusing dgemm
put (put (iq|jsiq|js) and () and (js|iqjs|iq) (i) (i≥≥j, all q and s) into presort buffers in memoryj, all q and s) into presort buffers in memory
write filled presort buffers to disk, update lists of records nuwrite filled presort buffers to disk, update lists of records numbersmbers

End loop over s shellsEnd loop over s shells
End loop over q shellsEnd loop over q shells
Flush presort buffers to diskFlush presort buffers to disk



One-index transformationOne-index transformation
basically a sequence of matrixbasically a sequence of matrix--matrix matrix 
multiplications:multiplications:

∑ ⋅=
p

piCrspqrsiq )|()|(



First one-index transformationFirst one-index transformation
Two ways: dense and sparse case:Two ways: dense and sparse case:

Dense caseDense case: : 
more memory is required to hold square more memory is required to hold square N by NN by N matrices of matrices of 
AO integrals.AO integrals.
matrixmatrix--matrix multiplication uses dgemm and is very efficient.matrix multiplication uses dgemm and is very efficient.
transparently multithreaded via MKL SMP support.transparently multithreaded via MKL SMP support.

Sparse case:Sparse case:
Less memory is required Less memory is required -- only only N by nN by n matrices are used to matrices are used to 
hold quarterhold quarter--transformed integrals.transformed integrals.
AO integrals are processed on the fly using daxpy.AO integrals are processed on the fly using daxpy.
Less efficient due to use of daxpy instead of dgemm => the Less efficient due to use of daxpy instead of dgemm => the 
degree of sparsity should be high enough to compensate.degree of sparsity should be high enough to compensate.
More problems with SMP support.More problems with SMP support.



Data presortingData presorting

After first halfAfter first half--transformation, we have transformation, we have 
((iq|jsiq|js) integrals for all i, j and fixed qs pairs. ) integrals for all i, j and fixed qs pairs. 
For the second halfFor the second half--transformation we need transformation we need 
them for a fixed them for a fixed ijij pairs, and all q, s. Thus pairs, and all q, s. Thus 
the transposition of the fourthe transposition of the four--index array is index array is 
required for the second pass.required for the second pass.
The PC GAMESS code uses efficient The PC GAMESS code uses efficient 
technique to perform this data reordering technique to perform this data reordering 
implicitly during first pass.implicitly during first pass.



Modified Yoshimine sorting 
(implicit sorting)

Modified Yoshimine sorting 
(implicit sorting)
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Second pass:Second pass:

Loop over Loop over ijij slicesslices
Loop over disk buffers from the corresponding listLoop over disk buffers from the corresponding list

read buffer into memory and fill matrices read buffer into memory and fill matrices CC(ij(ij) ) = (= (iq|jsiq|js))

End loop over disk buffersEnd loop over disk buffers
Loop over Loop over ijij in slicein slice

transform (transform (iq|jsiq|js) to () to (ia|jbia|jb) using dgemm & symmetry) using dgemm & symmetry
accumulate Eaccumulate EMP2MP2

End loop over End loop over ijij in slicein slice

End loop over End loop over ijij slicesslices



MP2, UMP2, and ROHF-MBPT2 
cases

MP2, UMP2, and ROHF-MBPT2 
cases

The implementations are very closeThe implementations are very close
MP2 and UMP2 share the first pass, in the MP2 and UMP2 share the first pass, in the 
latter case n is simply nlatter case n is simply nαα+n+nββ

The second pass is identical for UMP2 and The second pass is identical for UMP2 and 
ROHFROHF--MBPT2 and differs slightly from MBPT2 and differs slightly from 
RHF caseRHF case
In the case of ROHFIn the case of ROHF--MBPT2, the first pass MBPT2, the first pass 
can be either UHFcan be either UHF--like or can be based on like or can be based on 
the more advanced approach.the more advanced approach.



Luciferine TZV* example, 
398 b.f., 26 core, 46 occupied 

orbitals; running on AMD Athlon 
1200 MHz system

Luciferine TZV* example, 
398 b.f., 26 core, 46 occupied 

orbitals; running on AMD Athlon 
1200 MHz system

GAMESS DDI GAMESS
direct

PC GAMESS
direct

PC GAMESS
conventional

PC GAMESS-
specific code

Minimum memory
required

5MW(C)+173MW(S) 33MW 33MW 33MW 2.5MW

Memory used 5MW(C)+173MW(S) 159MW 159MW 159MW 4MW
CPU time, sec 17074(C)+2252(S) 18857 9894 5068 2812
Total time, sec 19348 18858 9895 5652 2913



Example analysisExample analysis

The DDIThe DDI--based method is the slowest.based method is the slowest.
The direct method in the PC GAMESS is The direct method in the PC GAMESS is 
approximately 2 times faster than that of original approximately 2 times faster than that of original 
GAMESS GAMESS -- this is the result of Intelthis is the result of Intel--specific specific 
optimization.optimization.
The conventional method is approximately 2 times The conventional method is approximately 2 times 
faster than direct due to integral packing.faster than direct due to integral packing.
The PC GAMESS specific method is the fastest.The PC GAMESS specific method is the fastest.
It requires very small amount of memory.It requires very small amount of memory.
It has very good CPU usage.It has very good CPU usage.



Parallelization problemsParallelization problems



Parallel code goalsParallel code goals

On the first pass, different qs pairs should be On the first pass, different qs pairs should be 
distributed over nodes.distributed over nodes.
On the second pass, different On the second pass, different ijij pairs should be pairs should be 
distributed over nodes. distributed over nodes. 



Main problemMain problem

During first pass, each node will produce During first pass, each node will produce 
((iq|jsiq|js) for the ) for the subset of q,ssubset of q,s pairs and pairs and all i,jall i,j..
During second pass, each node will need During second pass, each node will need 
((iq|jsiq|js) for the ) for the subset of i,jsubset of i,j and and all q,sall q,s pairs.pairs.

Each node should communicate with all Each node should communicate with all 
other nodes to send and receive the data the other nodes to send and receive the data the 
node will need for the second pass (parallel node will need for the second pass (parallel 
sorting is required).sorting is required).



Parallel sortingParallel sorting

Explicit sorting stage should be avoided to Explicit sorting stage should be avoided to 
improve performance.improve performance.
Parallel implicit sorting combined with the first Parallel implicit sorting combined with the first 
pass is required to sort & properly distributepass is required to sort & properly distribute
O(nO(n22NN22)) halfhalf--transformed integrals over nodes.transformed integrals over nodes.



Parallel sorting problemParallel sorting problem
Node X will Node X will sendsend data to node Y when they data to node Y when they 
will be computed by the node X => node X will be computed by the node X => node X can can 
use synchronous senduse synchronous send because it knows because it knows whenwhen
to send.to send.
Node X will Node X will receivereceive data at unpredictable data at unpredictable 
moments when they will be computed by moments when they will be computed by 
other nodes and then delivered via interother nodes and then delivered via inter--
connection network => node X connection network => node X cannot use cannot use 
synchronous receivesynchronous receive because because it does not it does not 
know when to receiveknow when to receive..



Parallel sorting problemParallel sorting problem
It seems that problem cannot be solved It seems that problem cannot be solved 
using standard interfaces like MPIusing standard interfaces like MPI

Parallel MP2 code requires dedicated Parallel MP2 code requires dedicated 
execution model and communication execution model and communication 
interface interface -- point to point (P2P) interfacepoint to point (P2P) interface..



P2P communication interfaceP2P communication interface



P2P interface philosophyP2P interface philosophy

PointPoint--toto--point message oriented interfacepoint message oriented interface
Logically separates calculations and Logically separates calculations and 
processing of incoming/generation of processing of incoming/generation of 
outgoing messagesoutgoing messages
Fully asynchronous very fast background Fully asynchronous very fast background 
processing of incoming messages using processing of incoming messages using 
useruser--provided callback routinesprovided callback routines
Fully asynchronous very fast background Fully asynchronous very fast background 
generation of outgoing messages, if requiredgeneration of outgoing messages, if required



Parallel sorting solutionParallel sorting solution
Each node should use asynchronous receive Each node should use asynchronous receive 
routineroutine

It is necessary to use multithreaded codeIt is necessary to use multithreaded code
At least two threads are required At least two threads are required -- first for first for 
computations & sends (worker) and second computations & sends (worker) and second 
to receive data (P2P receiver thread)to receive data (P2P receiver thread)



P2P execution modelP2P execution model

Initialization over MPI.Initialization over MPI.
Fully connected topology Fully connected topology -- each node each node 
connected to all other nodes via TCP.connected to all other nodes via TCP.
Dedicated highDedicated high--priority P2P receiver priority P2P receiver 
thread(s).thread(s).
Receiver thread calls user callback function Receiver thread calls user callback function 
to process each incoming message (and send to process each incoming message (and send 
response messages if necessary).response messages if necessary).
ThreadThread--safe implementation. In particular, safe implementation. In particular, 
user callback can call P2P functions as well.user callback can call P2P functions as well.



Basic P2P interfacesBasic P2P interfaces

P2P_Init(int P2P_Init(int nnodesnnodes, , intint mynodemynode, , intint
maxmsgsizemaxmsgsize))
P2P_Sendmessage(int P2P_Sendmessage(int dstnodedstnode, , intint msglenmsglen, , 
intint *message)*message)
P2P_Setcallback(P2PCB callback)P2P_Setcallback(P2PCB callback)
P2P_Shutdown(void)P2P_Shutdown(void)



P2P vs. other interfaces  P2P vs. other interfaces  

The real power of P2P is the user callback The real power of P2P is the user callback 
function called from a separate thread which function called from a separate thread which 
has access to all node’s resources including has access to all node’s resources including 
memory and files.memory and files.
GAMESS’ (US) DDI interface can be easily GAMESS’ (US) DDI interface can be easily 
(and more efficiently) emulated using P2P.(and more efficiently) emulated using P2P.
MPI can be emulated over P2P but it is MPI can be emulated over P2P but it is 
much simpler to use MPI + P2P combo.much simpler to use MPI + P2P combo.



Dynamic load balancing over P2PDynamic load balancing over P2P

Implementation of DLB over MPI is not a Implementation of DLB over MPI is not a 
trivial problemtrivial problem
Implementation of global shared counters Implementation of global shared counters 
requires less than 20 lines of code using P2Prequires less than 20 lines of code using P2P
HighHigh--performance performance asynchronousasynchronous DLBDLB



Parallel MP2 energy codeParallel MP2 energy code



The most elegant solutionThe most elegant solution

Use of P2P asynchronous receive feature Use of P2P asynchronous receive feature 
with userwith user--provided callback routine to provided callback routine to 
process incoming data (sort them and write process incoming data (sort them and write 
to the disk in the case of MP2 sorting).to the disk in the case of MP2 sorting).



Main featuresMain features

Basically the same as for sequential code.Basically the same as for sequential code.
On the first pass, different qs pairs are On the first pass, different qs pairs are 
distributed over nodes (Ndistributed over nodes (Nnodesnodes total) either total) either 
statically or dynamically.statically or dynamically.
Implicit parallel sorting is performed during Implicit parallel sorting is performed during 
first pass. first pass. O(nO(n22NN22)/ )/ NNnodesnodes disk space is disk space is 
required on each node to store halfrequired on each node to store half--
transformed integrals.transformed integrals.
On the second pass, different On the second pass, different ijij pairs are pairs are 
statically distributed over nodes.statically distributed over nodes.



How it works:How it works:

First passFirst pass: : 
((pq|rspq|rs) ) --> (> (iq|jsiq|js) half) half--transformation is performed transformation is performed 
for the assigned (or dynamic) subset of fixed qs for the assigned (or dynamic) subset of fixed qs 
pairs and all i, j on all nodes. The halfpairs and all i, j on all nodes. The half--transformed transformed 
integrals are sent to the corresponding nodes. integrals are sent to the corresponding nodes. 
At the same timeAt the same time, on each node, P2P thread , on each node, P2P thread 
receives the subset of halfreceives the subset of half--transformed integrals transformed integrals 
from all nodes and puts them into presort buffers. from all nodes and puts them into presort buffers. 
Presorted buffers are saved to disk in DAF using Presorted buffers are saved to disk in DAF using 
sequential writes and in memory control structures sequential writes and in memory control structures 
(lists of records).(lists of records).



Parallel implicit sorting, worker 
thread view

Parallel implicit sorting, worker 
thread view
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Parallel implicit sorting, P2P 
thread view

Parallel implicit sorting, P2P 
thread view
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How it works:How it works:

Second passSecond pass: : 
presorted halfpresorted half--transformed integrals are fetched transformed integrals are fetched 
from the disk buffers, then the second halffrom the disk buffers, then the second half--
transformation is performed on each node: (transformation is performed on each node: (iq|jsiq|js) ) --> > 
((ia|jbia|jb) for the assigned subset of fixed ) for the assigned subset of fixed ijij pairs and pairs and 
all q, s. MP2 energy correction is accumulated.all q, s. MP2 energy correction is accumulated.

Finally:Finally:
the global summation of the partial contributions to the global summation of the partial contributions to 
the MP2 energy from each node is performed.the MP2 energy from each node is performed.



Sample applicationsSample applications



Small moleculesSmall molecules
System Aspirin Porphine Yohimbine α-Pinene Cadion

Basis 6-311G** 6-31G** 6-31G** 6-311G
(3df,3p)

cc-pVTZ

N 295 430 520 602 1120

c 13 24 26 10 26

n 34 57 69 28 64

1 node 37 47 282 646 -
2 nodes 19 24 147 322 1579

Total time,
min.

4 nodes 10 12 73 160 767

Pentium III Xeon (1024KB) 500MHz / 512MB / 25GB / Fast Ethernet
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Large molecules:
Fullerene C60 and its dimer C120

Large molecules:
Fullerene C60 and its dimer C120



Large moleculesLarge molecules
System C120 C60

Basis cc-pVDZ cc-pVTZ
Group D2h D2h

N 1800 2100
c 120 60
n 240 120
Nnodes 20 19
Distributed DAF size 771 GB 347 GB
2e integrals calculation time, sec. 3300*4 5505*4
Total first pass CPU time, sec. 66647 57133
Second pass CPU time, sec. 36962 17937
Total CPU time per node, sec 103680 75181
Wall clock time, sec. 112697 79490
CPU usage, % 92 94.58
Node performance, MFlop/s 330 295
Performance, % of peak 66 59

Pentium III 500MHz / 512MB / 55GB / Fast Ethernet



Largest MP2 calculation attempted so farLargest MP2 calculation attempted so far
System C120

Basis cc-pVTZ-f
Group D2h

N 3000
c 120
n 240
Nnodes 18
Dynamic load balancing off on on
Real time data packing off on on
Asynchronous I/O off off on
Total FP operations count 3.24⋅1015 3.32⋅1015 3.32⋅1015

Distributed data size 2.0 TB 2.0 TB 2.0 TB
CPU time on master node, sec 83029 89301 95617
Wall clock time, sec. 150880 110826 95130
CPU usage, % 55 80.5 100.5
Node performance, MFlops/s 1330 1935 2320
Performance, % of peak 27.7 40.3 48.3
Cluster performance, GFlops/s 23.9 34.8 41.7

Pentium 4C with HTT 2.4 GHz / 1024MB / 120GB / Gigabit Ethernet



Thank you for your attention!Thank you for your attention!
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