Fast direct large-scale MCSCF
code for Segmented and General
Contraction Basis Sets

Alexander A. Granovsky

Laboratory of Chemical Cybernetics, M.V. Lomonosov

Moscow State University, Moscow, Russia
September 14, 2005



| arge-scale MCSCF

m Main steps of MCSCEF iteration (“unfolded
two step” type)

Integral transformation
Cl problem
DM1 & DM2 calculation

Orbital Improvement

+ Multiple different strategies based on linear, quasi-linear, or
guadratic minimization methods

B |_arge basis sets, medium Size active spaces
Performance limited by integral transformation

W |_arge active spaces, small basis set
Performance limited by Cl matrix diagonalization




Memory requirements

m Integral transformation
CeN?
CeN?
m Cl matrix diagonalization:
C°Ndet
m Orbitals Improvement
up to Ce(N?+ N.)? (“folded one- & two-step™)
CeN*
CeN?
CeN? (example: quasi-Newton type methods)




Classification of transformed 2-e
Integrals
m Orbital types:

0 - doubly occupied (core)
a - active space (valence)
V - virtual

P, g, I, S - arbitrary

m (pglrs) types:

(aalaa) & Fock matrix - required always (Cl step)

(aalrs) - required for calculation of the diagonal part of
orbital Hesslan and guasi-Newton orbital improvement
methods

(o+a,q|rs) - required for full orbital Hessian and true

Newton-type orbital improvement step (integrals with
three virtual Indices are not needed)




Method selection for large-scale
MCSCF

m Memory requirements: CeN? =>

Dedicated low-memory demands integral
transformation code

m Quasi-Newton orbital improvement step
Fast
Modest memory demands

Requires only small subset of transformed
Integrals =>
+ simpler and more efficient integral transformation




Main problem

m Special efficient integral transformation
code for (aalrs)-type integrals with:
Quadratic memory demands

Ability to handle both SC and GC basis sets
efficiently

High parallel' mode scalability



Integral transformation basics

m (pgrs) = X, 2, 2 25 Cp Gl GGy (1v|ro)
m Usually considered as a sequence of four quarter-
transformations:
(pvlro) =X, C, (1v]ro)

(PgjAc) = Z, Cy (pv|ro), etc...

V (0)Y

m Alternative approach:

(palro) = 2, %, Cy, Cp, (1v[io)
+ D(pq)w: Cy Cos
+ 309, = (pafro) = 2, DEI, (uv[io)
B Reminiscence: Fock Matrix
F,(D) = J(D) - K(D)
+ ‘J AG — va (le}\‘G)Dpv



Approach comparison

m Standard approach (four sequential quarter-
transformations):
Asymptotically n,N? operations

Straightforward to utilize the eightfold permutation symmetry of
ERIs

N° memory demands
Limited parallel scalability

m Alternative approach:
Asymptotically n,2N? operations

Straightforward to utilize the eightfold permutation symmetry of
ERIs

N2 memory demands
High degree of scalability
Implementation based on our direct Fock matrix construction code



Alternative approach: pros and

cCOoNns
H Pros

For small active spaces, n, Is small => additional overhead due to
worse asymptotic can be neglected as dominant part of the
calculations is evaluation of ERIs in AO basis

Modest memory requirements

Allows direct generalization to GC case based on our approach to
Fock matrix construction for GC-type basis sets

High level of intrinsic parallelism

m Cons

For larger active spaces, n,? is significantly larger than n,=>
additional overhead due to different asymptotic is considerable

For GC-type basis sets, additional overhead Is even more serious If
using our strategy of Fock-like matrix builds.



Optimal strategy

m Small active spaces:

use alternative approach for both SC and GC-
type basis sets

B Larger active spaces:

use something else (but not the standard
approach in its straightforward implementation)



Standard way modification

m Why standard way requires so much memory?

Because it utilizes eightfold permutation symmetry of
ERISs:

+ C, (uwlro) -> (pv|ro)

+ C,.(vuro) -> (pulic)

*

<+

m Solution:

use only fourfold permutation symmetry
+ C,.(nv|rho) -> (pvjro)
+ C,,(viic) -> (ppjic)

Compute (pv|ic) for all' wv and fixed Ao, then perform second
half-transformation (matrix multiplication) (pgjic) = 2, C, (Pv|Lc)

(Ao fixed) and store



Modified vs. standard way

B Larger overhead due to ERI reevaluation
Not significant for large active spaces

B Requires much less memory (the same
amount as the alternative approach)

B Has the same parallel scaling properties as
the alternative approach

m Has the same good n,N# operations count
asymptotic as the standard way

m Allows efficient generalization for GC-type
basis sets based on our approach to Fock
matrix construction



Generalization for GC basis sets

B (pglrs) = 2,2, 25 25 Cp G GGy (1v|rio)
B (nv|io) = Xy Xy 2y X €GN G Cos (MNILS)

(palrs) =X, %, %, %, C, CqyCriCop 2y Zyy 2 Zs CmCinG Cos (MNILS)

(pglrs) =Xy 2N 2 2s (Zu Cim Cpu) (2, Cin qu)(zx G Cr)(Es Cos Csr)(MNILS)
=> new transformation matrix is simply c*c
m It is not efficient for standard way as N would be replaced
by much larger N, d_ramatically Increasing memory
demands and computational costs

m It is much more efficient for modified way and MCSCF

due to

different memory asymptotic
small values of n, required for MCSCEF integral transformation



I'hank you 1or your attention'!




	Fast direct large-scale MCSCF code for Segmented and General Contraction Basis Sets
	Large-scale MCSCF
	Memory requirements
	Classification of transformed 2-e integrals
	Method selection for large-scale MCSCF
	Main problem
	Integral transformation basics
	Approach comparison
	Alternative approach: pros and cons
	Optimal strategy
	Standard way modification
	Modified vs. standard way
	Generalization for GC basis sets
	Thank you for your attention!

