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RPA & TDDFT master equation

The basic statement 1s that excitation
energies are the stationary points of the functional

G[X,Y,Q]=(X,Y|A|X,Y)— QUX,Y|AlX,Y)—1). (1)

() is a real Lagrange multiplier, and the vectors

X
Y) 2)

are defined on the Hilbert space L =1L ;X L .cDL e X Lyt »
where L. and L, denote the Hilbert spaces of occupied
(occ) and virtual (virt) molecular orbitals (MOs), respec-
tively. The MOs ¢, ,(r) are solutions of the static KS equa-
tions with eigenvalues €,,. As usual, indices i,/,... label
occupied, a,b,... virtual, and p,q,... general MOs. We as-
sume the MOs to be real, which 1s always possible in the

absence of magnetic fields.

X, Y)=



RPA & TDDFT master equation

The “superoperators” A and A
read

T

B A 0 —1

A and B are sometimes called orbital rotation Hessians




A and B matrices

(A _I_B)iaa'jbcr’ - (Eaa'_ Efﬂ') 55;'51:1550'0"
+2(iao|jba")+2 fiiner
— ¢ 8,5 (Jaaliba)+(abalijo)],

(A _B)z'aa'jbo" — (Eacr_ €io 55}'5a550'0" + Cx5a'a"[(jao-|ibo-)

—(abolijo)].
(pgo|rsa’) is a two-electron repulsion integral in Mulliken

notation, and f;;wsg, represents matrix element of the
exchange-correlation kernel in the adiabatic approximation,

fxc ( ’) 52Exc
A\ )= Ay
d 5pa'(r)5po"(r )




RPA & TDDFT master equation

Applying the variational principle, we obtain the station-
arity conditions for G,

5G
5(X,Y|

= (A—QA)|X,Y)=0,

&G_XYAXY 1=0
—q — (X YA Y)—1=0.

The CIS or
Tamm-—Dancoff approximation (TDA) is easily derived by
constraining Y identically to zero in the variation of G.




How to solve?

mCIS

Davidson diagonalization

+ Requires construction of A-X products for trial
vectors X

m RPA & TDDFET

Davidson-like diagonalization methods
+ Reqguire construction of (A+B)-X, (A+B)-Y,
(A-B)-X, (A-B)-Y products for trial vectors X and Y
B For our purposes, It Is sufficient to consider
In details CIS only.




AO-driven CIS

m et us consider RHF-based CIS for simplicity

m Let us transform basis from determinants to SAPS
(CSF) to solve separate problems for singlet states
(and triplet states) and to avoid spin-orbitals.

B AX =20 A0 Kb

Ala,Jb_(ga 8|)6Ij 8ab i

+ The most efficient way to evaluate this part of the matrix-
vector product is to use MO basis.

Ajajp=- + (13]]b) + exchange-related terms

+ The most efficient way to calculate these parts ofi matrix-vector
product (most time-consuming step) Is to use AO basis:

+ Z:jb(ialj b)'ij: Z:jb qursclpCaq jers (pqlrs) X

quCipCanrs (pqlrs)'(ZJbCJers jb)



AO-driven CIS benefits

B Does not require integral transformation

applicable to very large systems
simplifies use of molecular symmetry

m Is based on the construction of Fock-like
matrices

All'known approaches used to solve large-scale
SCF problems can be also used in the case of
CIS

+ Linear scaling
* QFMM
 |inear exchange



Main CIS and SCF differences

m CIS operates with non-symmetrical (square)
density-like and Fock-like matrices

m CIS results in non totally-symmetric density
and Fock-like matrices. The symmetry Is
defined by the symmetry of the target CIS
state




Reminiscence. Use of molecular
point group symmetry in SCF
methods

m At least two different ways:

Use of symmetrized AO basis functions and 2-e
Integrals

Use of petite AO integral list:

+ Construction of the skeleton Fock matrix

+ Projection/symmetrization to the totally symmetric
Irreducible representation at the end




Skeleton matrix symmetrization
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Recently, Dupuis and King [1], following earlier work by Dacre [2], have
presented a method for constructing the matrix representation, over an Ao basis,
of a toally symmetric operator O, using only symmetry-distinct Ao integrals. Such
a totally symmetric operator O satisfies the equation

R'OR=0, (1)

here O is the matrix of O in the Ao basis, and R is the matrix representation

of the effect of R, an operator from the molecular point group %, on the Ao basis
X:

Rx=xR. (2)

R is a nonunitary reducible representation matrix. Of course, in general, many
operators are not totally symmetric,




Skeleton matrix symmetrlzatlon

Any one-electron operator O will transform as a particular row (say,
of a particular representation (say I'), that is,

O =Y 9% . (R*R'OLR.
A

In matrix form we then have

O(T, K) =Y DL A(R)*R'O(T, A)R.

Here A runs over all partners in representation I' and 2" (R) is a representation

matrix. It should be noted that I" is not required to be irreducible but can always
be taken as unitary.

We define symmetrization of an operator matrix O(I', K) by
O(T, K)oym=(28) "' LT D%A(R)*R'[O(T, A)+pO(T, A)'IR,  (11)
R A

where p =+1 if the operator is Hermitian and p = —1 if it is anti-Hermitian. We
wish to establish the following
Theorem:

O(T, K) = O(T, K).ym
=(28)"' L X Dka(R)*RY{O(T, A)+ pO(T, A)"}R.




Terminology

Projection and Shift Operators
e An operator

IS @ projection operator or projector. It is Hermitian and
idempotent. For ¢ # ;7 we have a shift operator

P =9 e Z D3 (G)*G.
G

e [For a projection operator
‘@“ﬁf = ff’ (O'I' 0)‘

whereas
PLIE= 17

That is, we obtain partner functions of f&.




Gathering things together

m Now we have all the tools to construct
algorithm for (any symmetry) Fock-like
matrix assembly using petite integral list

W |_et us consider some 2-d Irrep. E without
the loss of generality.

m \We are interested in getting CIS states
transforming, say, as the first row of E only,
as thelr counterparts can be constructed (if
needed at all) after diagonalization of the
CIS Hamiltonian using shift operators.



I'S

shift

= =
b Prs

Strategy

Fock matrix

construction,

petite list




The only nontrivial (?) point

m Shift and projection operators for density-
like matrices are not the same as for Fock-
like matrices!

Fock-like matrices:

()
Density-like matrices:
*




I'hank you 1or your attention'!
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