1 Moller-Plesset correlation corrections

1.1 Introduction

One important approximation made in the Hartree-Fock model is that, for
each electron, the interaction of this electron with the other electrons in a sys-
tem is simplified by considering only an average interaction. As a result, the
energy of a system as obtained with the Hartree-Fock model is higher than the
energy that would be obtained if all electron-electron interactions would indi-
vidually be taken into account. This difference in energy is commonly referred
to as the dynamic electron correlation energy.

One theory for recovering this dynamic correlation energy that is absent from
the Hartree-Fock solution is Meller-Plesset perturbation theory. In Firefly,
it is possible to perform second-order, third-order, and fourth-order Moller-
Plesset energy corrections (commonly abbreviated as MP2, MP3, and MP4),
where higher-order methods obtain more of the missing correlation energy
than lower-order methods (but also require more computational resources).
MP?2 is implemented for RHF, UHF, and ROHF wavefunctions with analytic
gradients available only with RHF. MP3 and MP4 theories on the other hand
are implemented for RHF wavefunctions only and can only be used to obtain
energies.

The MP2 code in Firefly has been optimized for performance to a great extent.
MP2 performance is discussed in a section of its own, and it is recommended
to read through this section before commencing with MP2 calculations.
Second-order Meller-Plesset theory is also implemented for MCSCF wavefunc-
tions in the form of MRMP2 and (X)MCQDPT?2 theory. This theory is dis-
cussed in the (X)MCQDPT2 chapter.

1.2 MP2 calculations

MP2 calculations can be requested by specifying MPLEVL=2 in $CONTROL,
in combination with SCFTYP=RHF, UHF, or ROHF. Keywords that pertain to
MP2 calculations are found in the $MP2 group. Additionally, keywords in the
$MP2GRD group can be used to control the calculation of gradients.

There is little that has to be said with respect to RHF and UHF MP2 calcu-
lations. The most important thing is that the description of the system un-
der investigation should already be good at the zeroth-order level (i.e. at the
Hartree-Fock level). If this is not the case, it is probably better to use MCSCF
theory and recover the correlation energy using (X)MCQDPT2.

One point which may not be commonly appreciated is that the density matrix
for the first-order wavefunction for the RHF case, which is generated during
gradient runs or if properties are requested in the $MP2 group (MP2PRP=.TRUE.),
is of the type known as "response density", which differs from the more usual
"expectation value density". The eigenvalues of the response density matrix
(which are the occupation numbers of the MP2 natural orbitals) can therefore
be greater than 2 for frozen core orbitals, or even negative values for the high-
est 'virtual” orbitals. The sum is of course exactly the total number of elec-
trons. We have seen values outside the range 0-2 in several cases where the
single configuration RHF wavefunction was not an appropriate description of

1

the system, and thus these occupancies may serve as a guide to the wisdom of
using a RHF reference.

The case of ROHF MP2 deserves more explanation. There are a number of
open shell perturbation theories described in the literature. It is important to
note that these methods give different results for the second-order energy cor-
rection, reflecting ambiguities in the selection of the zeroth-order Hamiltonian
and in defining the ROHF Fock matrices. Two of these are available in Firefly.
One theory is known as RMP which, it should be pointed out, is entirely equiv-
alent to the ROHF-MBPT2 method. This theory is as UHF-like as possible, and
can be chosen by selection of OSPT=RMP in $MP2. The RMP method diago-
nalizes the alpha and beta Fock matrices separately so that their occupied-
occupied and virtual-virtual blocks are canonicalized. This generates two dis-
tinct orbital sets whose double excitation contributions are processed by the
usual UHF MP2 program, but an additional energy term from single excita-
tions is required.

RMP’s use of different orbitals for different spins adds to the CPU time re-
quired for integral transformations, of course. RMP is invariant under all of
the orbital transformations for which the ROHF itself is invariant.

Unlike UHF MP2, the second-order RMP energy does not suffer from spin
contamination, since the reference ROHF wavefunction has no spin contam-
ination. The RMP wavefunction, however, is spin contaminated at 1st and
higher order, and therefore the 3’ and higher order RMP energies are spin
contaminated.

The ZAPT (Z-averaged perturbation theory) formalism is also implemented
in Firefly, and can be requested by specifying OSPT=ZAPT in $MP2. Because
this theory is not spin contaminated at any order, and has only a single set of
orbitals in the MO transformation, it is the default. It should be noted that,
at present, the new MP2 code can only execute ROHF MP2 calculations of the
RMP kind. ZAPT?2 calculations should be run with old MP2 code (see the sec-
tion on MP2 performance for more information on the new MP2 code).

There are a number of other open shell theories with names such as HC, OPT1,
OPT?2, and IOPT. These are not implemented in Firefly but equivalent results
can be obtained by using GUGA-style MCSCF followed by (X)MCQDPT?2. The
same is true for GVB-based MP2. For example, one could use a $DRT input
such as

NMCC=N/2-1 NDOC=0 NAOS=1 NBOS=1 NVAL=0

which generates a single CSF if the two open shells have different symmetry.
For a one pair GVB function, one can specify

NMCC=N/2-1 NDOC=1 NVAL=1

which generates a 3 CSF function entirely equivalent to the two configuration
TCSCE, also known as GVB-PP(1). And if one would attempt a triplet state
with the GUGA MCSCF program

NMCC=N/2-1 NDOC=0 NALP=2 NVAL=0

one would get a result equivalent to the OPT1 open shell method instead of
the RMP result. For details on $DRT input, please see the chapter on MCSCE.
A feature new to Firefly 8.0.0 is the possibility to scale the two MP2 spin com-
ponents by certain factors. This functionality is controlled through the SCS
keyword and is programmed for RHF, UHF, and ROHF (though only RMP, not
ZAPT?2). Currently, only energies are available. Input should be of the form:

$MP2 SCS(1)=singlet_pairs_multiplier,triplet_pairs_multiplier $END

As an example, Grimme’s SCS-MP2 scheme can be specified as:

$MP2 SCS(1)=1.2,0.333333333333333 $END

while the SOS-MP2 scheme from Head-Gordon and co-workers can be speci-
fied as:

$MP2 SCS(1)=1.3,0 $END

Note that use of spin scaling forces the use of MP2 METHOD=1 code (see next
section), which is faster than Laplace-transform based code even for SOS-MP2.

1.3 Performance of the MP2 code

Over the years, the MP2 code in Firefly has been great optimized greatly.
Therefore, some information with respect to performance should be given.
One of the most important things to note is that, in comparison to the GAMESS(US)
code on which Firefly is originally based, Firefly has a new RHF/ROHF/UHF
MP2 energy program which is designed to handle large systems (e.g., 500 AOs
or more). It is direct, very fast, and requires much less memory compared to
other MP2 methods. Use of this new program can be requested by specifying
METHOD-=1 in $MP2 and is recommended for all medium and large jobs. For
small jobs, the old method is still faster due to less overhead (the new program
always requires the 2-electron AO integrals to be reevaluated four times, re-
gardless of the size of the job). It is for this reason that the old method has
remained the default one.

The memory requirements of the new program scale as approximately N2.
This as opposed to the other MP2 programs currently implemented, which
scale as at least N3 for the segmented transformation and as A - N? for the
alternative integral transformation. Here, A and N are the number of active
orbitals and the total number of MOs, respectively. Disk requirements of the
new code scale as A>2N?2, whereas they scale as A - (N — A)? for the alternative
integral transformation. The segmented transformation does not use tempo-
rary disk storage. Disk I/O is used, but to a very limited degree. Therefore, the
CPU utilization is usually 90% or even better. The CPU utilization is usually
less than 50% for other MP2 transformation methods working in the conven-
tional mode, while, in the direct mode, there is a very serious overhead because

3

of the multiple reevaluation of 2-electron integrals.

Asymptotically, the FLOPs count with the new program is about a half or even
better as compared to other MP2 energy transformation methods.

Then, it is important to discuss some specifics about the MP2 gradient code.
Since version 7.1, Firefly has new and efficient semidirect MP2 gradient (and
properties) program that is based on fastints code and runs in parallel using
the P2P interface. Contrary to the new MP2 energy program, the new MP2
gradient program is used by default, so no additional keywords have to be
specified in order to enable its use. Gradients are available only for RHF wave-
functions. Note that use of the gradient program automatically forces the use
of the new MP2 energy program.

The memory demands of the new gradient program are quite modest: asymp-
totically, they are proportional to

Nocc : (Nocc +Nc0re) : Nvir

where N is the number of active occupied orbitals (i.e., excluding frozen core
orbitals), N¢gre is the number of frozen core occupied orbitals, and Ny;, is the
number of virtual orbitals. Parallel scalability is good, with most of the mem-
ory demands reducing linearly with the number of used computing nodes.

As for disk I/0, the new MP2 gradient program uses (large) temporary files to
store half-transformed 2-electron integrals (in the DASORT file) and the non-
separable part of the MP2 2-particle density matrix (DM2, stored in DAFL30
file during gradient runs only). Therefore, disk I/O can be quite intensive.
When running in parallel, the contents of these files is evenly distributed
across all nodes. If one is running this code in parallel on an SMP or mul-
ticore system, it is recommended to assign a separate physical disk to each
Firefly process.

Unfortunately, the exact amount of disk space required to store files DASORT
and DAFL30 cannot be predicted exactly because of two reasons. First, the
Firefly uses sparsity of half-transformed integrals and DM2 to save disk space
by storing only non-zero values. Second, half-transformed integrals, DM2 ele-
ments as well as their labels are further packed, and it is impossible to predict
the exact packing ratio. However, it is possible to provide upper bounds on the
overall maximum sizes of DASORT and DAFL30. Note, these bounds usually
seriously overestimate the real size of these files!

Namely, the overall size of all DASORT files is less or equal than:

6 * Noce " Nyirt - Nao - (Nao + 1) by tes
Similarly, the overall size of all DAFL30 files is less or equal than:

8 *Nocc * INyirt >('Z\]ao * (Nao + 1)byt€5

Here, Ny is the number of active occupied orbitals, Ny;; is the number of
virtual orbitals, and N, is the number of Cartesian atomic orbitals.

When using the new gradient program, it is recommended to use the following
input:

$CONTRL INTTYP=HONDO $END
$P2P P2P=.T. DLB=.T. XDLB=.T. $END
$SMP CSMTX=.T. $END

$MP2 METHOD=1 $END

Depending on your operating system (e.g., under some Windows systems), the
use of the following addition options:

$SYSTEM SPLITF=.T./.F. $END (large file splitting enabled/disabled)

and/or

$SYSTEM IOFLGS(30)=1 $END (activates file cache write through mode for unit # 30
which contains DM2 elements)

may have serious positive or negative impact on the overall performance as
well.

The following set of parameters of the new MP2 gradient code seems to be
optimal in the case you are running large problems in parallel on Linux-based
SMP or multicore system which do not have a separate physical disks for each
instance of the parallel Firefly processes.

$SYSTEM SPLIT=.F. $END
$SYSTEM IOFLGS(30)=0 $END
$MP2GRD DBLBF=.F. FUSED=.F. ASYNC=.T. $END

The following set of additional I/O parameters seem to be optimal for large-
scale jobs running under Windows Vista and Windows Server 2008 R1:

$MP2 IOFLGS(1)=65536,65536 IOFLGS(3)=65536,65536 $SEND

These settings turn on direct unbuffered disk I/O for the files DASORT and
DICTNRY and disable standard buffered disk reads and writes.

If the I/O remains a significant bottleneck, or if the amount of available disk
space is not sufficient for carrying out an MP2 calculation, one can enable the
direct evaluation of AO integrals. This is done by specifying DIRECT=.T. in
$MP2, which will somewhat reduce the amount of disk space used at the cost
of additional CPU time.

Finally, it should be noted that the new gradient code requires higher accuracy
when there is a partial linear dependence in the AO basis set. We recommend
the use of the following settings (tighter values can be used if desired):

$CONTRL ICUT=11 INTTYP=HONDO $END
$SCF NCONV=7 $END
$MP2GRD TOL1=1D-12 TOL2=1D-12 $END

1.4 MP3 and MP4 calculations

MP3 and MP4 type calculations can be requested by specifying MPLEVL=3
and MPLEVL=4 in $CONTROL in combination with SCFTYP=RHE. Related
keywords can be found in the groups $MP3 and $MP4. As noted earlier,
these calculations are only implemented for RHF wavefunctions - ROHF and
UHF MP3/MP4 calculations are currently not possible. For MP4, it is possible
to perform three types of calculations, namely MP4(SDQ), MP4(SDTQ), and
MP4(T). The default MP4 type is MP4(SDQ).

MP3 and MP4(SDQ) calculations are multithreaded and cannot be executed in
parallel mode as the corresponding code was written several years ago and was
not allowed to run in parallel at the time. Despite this, the code is still quite
efficient and scales well with increasing numbers of threads. The MP4(T) code
on the other hand was written more recently, is more advanced, and is written
to run in parallel, though it also benefits from multithreading. This makes
performing an MP4(SDTQ) calculation in the most optimal way a bit compli-
cated.

To explain this a bit more: it is perfectly possible to perform an MP4 calcula-
tion in a single job which can done by specifying

$MP4 SDTQ=.T. $END

However, in terms of computational time this is not the most optimal way.
When run in parallel, the MP4(SDQ) part of the calculation cannot run in
parallel and will therefore just be duplicated on all instances of Firefly. At the
same time, multithreaded execution is also not optimal as the MP4(T) part of
the calculation will not benefit as much from multithreading as it does from
parallel execution. Also, the Hartree-Fock part of the calculation does not
benefit from multithreading.

Because of this, it is advised to split an MP4(SDTQ) calculation up in three
separate steps (i.e., jobs). The first step is to perform a parallel Hartree-Fock
calculation. The option

$CONTRL WIDE=.T. $END

can hereby be used to punch the HF orbitals with double accuracy. The sec-
ond step is then to perform a multithreaded MP4(SDQ) calculation, using the
orbitals from the previous step as the initial guess. The third and final step is
to perform an MP4(T) calculation (which can be requested using

$MP4 TONLY=.T. $END

again using the HF orbitals as the initial guess. As noted, the MP4(T) code
can run parallel and multithreaded at the same time and it is advisable to do
so. The optimal number of threads per process depends here on the particular
computer architecture that is used. In most cases, it is equal to the number
of physical cores sharing the same memory domain on the cc-NUMA system.
E.g., assuming that a 2-way four-core Xeon 5500 system is used, the best way is
to use 2 processes per box with four working threads each. However, this can

6

be adjusted to minimize I/O or scratch storage, and the code is flexible here.
The usage of Abelian symmetry can greatly decrease the required CPU time
for any MP3 or MP4 calculations. Unlike MP2 case, where the speed up due
to the use of symmetry is roughly proportional to the first power of the order
of the symmetry group (Ng) used, in the case of MP3 and MP4 jobs, the speed
up is proportional to Ng? on the average.

It finally should be noted that, in practice, there might not be much of a rea-
son for performing MP3 calculations, as the computational cost of a large
MP4(SDQ) calculation is typically only 2-3 times greater than that of a sim-
ilar MP3 job. Also, the memory demands of both types of calculations are very
similar. MP4(SDTQ) jobs are always much more demanding.

