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= Very efficient state of the art implementation
IS available
— Capable to handle up to several thousands

basis functions with active spaces up to
several millions CSFs

— Detalls are described in two presentations
on the PC GAMESS/Firefly homepage



= Huge amount of data for different large
systems obtained as the result of our activity

— Deep Iinsight and huge experience
— Huge statistics



= Off-diagonal elements of H_; seems to be randomly
overestimated by up to two orders of magnitude
— Especially pertained for large systems
— Especially pertained if common set of leading CSFs iIs

spanned by the reference MCSCF wavefunctions

= Within MCQDPT2, H.; does not explicitly depend on
the model space dimension (N)
— HN is simply enclosed into HN*L , etc...

— The diagonal elements of H_; are just the (state-
averaged) approximations to the (state-specific) MR-
MP2 energies

= Do then off-diagonal elements have any sense at all???



All-trans Retinal protonated Shiff base molecule
cc-pVTZ basis set
1445 Cartesian AOs, CAS(12,12)
Sy-S; transition
Double excitations from double occupied to virtual
orbitals are taken into account using MP2-like

formulas to decrease off-diagonal elements of

effective Hamiltonian

SO TETSSSTSTSTSSTSSPSSHIPTY
###  MC-QDPT2 RESULTS  ### . _
A Sy-S; transition energy:

*** EFFECTIVE HAMILTONIAN (0-2) ***  ,Eyneriment: 620-640 nm

1 2 *Using diagonal elements of H 4
1 -9.897411D+02 .
2 -2.973794D-02-9.896678D+02 (MR-MP2 like): 622 nm

*From H, diagonalization: 483 nm



= There are some internal flaws In the
formulation of this theory!



MCQOQDPT: analysis
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Quasidegenerate perturbation theory with multiconfigurational
self-consistent-field reference functions

Haruyuki Nakano?®

Department of Chemistry, Faculty of Science, Kyoto Umvers:‘ty, Kyoto 606, Japan
(Received 22 December 1992; accepted 13 August 1993)

A quasidegenerate perturbation theory based on multiconfigurational self-consistent-ficld
(MCSCF) reference functions is derived. The perturbation theory derived here is for multistate,
where several MCSCF functions obtained by the state-averaged MCSCF method are used as the
reference and an effective Hamiltonian is constructed by perturbation calculation. The energies
of states interested in are obtained simultaneously by diagonalization of the effective
Hamiltonian. An explicit formula of the effective Hamiltonian through second order is derived
as well as general formalism, and is applied to calculate potential curves of the system H,,
Be-H,, CO, NO, BN, and LiF. The results agree well with those of full configuration interaction
or multireference single and double excitation configuration interaction methods for both the
ground and the excited states.




= PT of partially contracted type

= Theory with Unitary normalization
—Van Vieck type PT

= Note that the derivation of PT equations in
the primary paper is not quite correct

— The correct one will be reported elsewhere

= Some of the basic equations are
nevertheless correct in the primary paper

— But not all of them as will be shown below!
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The zeroth-order wave functions (reference functions)
in the present theory, which define P space, are state-
averaged complete active space self-consistent-field
(CASSCF) wave functions for target states (i). The com-
plementary eigenfunctions of the CAS CI Hamiltonian (ii)
and the CSF’s generated by exciting electrons out of the
CSF’s in the active space (iii) are orthogonal to the refer-
ence functions and define Q space. These functions are used
as the basis set to expand the exact wave functions for
target states. For convenience, we further denote the MC-
SCF space spanned by functions (i) and (ii), and its or-
thogonal complementary space spanned by functions (iii),
R space and S space, respectively. Hereafter, Greek letters,
capital letters, and lower case letters, are used to denote
multiconfigurational states, single CSF’s, and general
states, respectively.
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The total Hamiltonian is first split into
H=H°+V, (1)

where H° is an unperturbed Hamiltonian and ¥ is a per-
turbation. We assume that the Schrodinger equation for
the unperturbed system,

H|ry=EP|r) (2)

provides a complete set of eigenfunctions { |7} } with cor-
responding eigenvalues {E"}. The exact eigenfunctions -
{| ¥} can be expanded by the basis set {|7)} as

e

W)= 2 C,|r). | (3)
r




To formulate the perturbation theory uniquely, we
must define the zeroth-order Hamiltonian. It is useful if the
zeroth-order Hamiltonian is a sum of one-particle opera-
tors, since the zeroth-order energies are immediately ob-
tained as sums of the eigenvalues. However, the MCSCF
orbital is not an eigenvector of a one-particle operator, so
that diagonal part of an operator, which is analogous to the
Fock operator, is used:

H= ) f pq“}aaqaapq‘_‘ > epa;oapw (26)
fpqa po

where €, is defined as the orbital energy. The label o de-
notes the spin label. As the matrix f pgr W€ adopt

fog=hpgt+ 2 D[(pg|rs)—3(prigs],  @7)

where Df] denotes state-averaged one-particle density ma-
trix.



= The oversimplified choice of H° makes
theory absolutely non-invariant

— This causes lots of problems actually...
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There still remains an arbitrariness in choosing the
MCSCF orbitals because the CASSCF energies are invari-
ant under the rotation in doubly occupied, active, and ex-
ternal orbital spaces. The canonical Fock orbital set!!™!

which leads the partially diagonal form in each space of f,,
and natural orbital set'#'® which leads the diagonal form
of the one-particle density matrix have been used so far. In
the present paper we used both the orbital sets.
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Equation
(30) is further reducible to the sum-over-orbitals form, if
we use Eq. (23) and substitute the second quantized form

of perturbation ¥ in Eq. (30),

V_Z(hm epapq)Engr 2 (pq|r)Epy s

PQ?‘S
= 2 Vol pgti 2‘. (Pq|75) E py rs» (31)
qu

where E,, and E,, ., are one- and two-particle generators
of the unitary group, respectively, and are defined by

qu= Z a;aaqars (32)
o

qu, rs— quErs—agrEps —




where (H.c.) stands for Hermite conjugate terms. Explicit
formulas at the lowest few orders are

(a| G |B)=EFSTFs,g, (20)

(a|#2|B) =1a| V(RsV) | B) + (H.c.), (21)
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etc., where Rgand R denote resolvent operators for the S
space and the Q space, respectively, and are defined for an

arbitrary operator A4 as

(i| (Rs4)| 1)
=(i|S(Rsd) P{j)
) _

4 Ej —'E

|0 (&ise),

(i| (ARD) | /)
=(i| P(ARE)S| /)

oy $ij4|j) (if ieS,jeP),
i

(24)

(25)




From Eq. (21) the second-order effective Hamiltonian
is written as the sum-over-states form,

(a|#2|B) =-;-§‘, (a| V| I}

1
ED _EY (I|V|B)

+ (H.c.), (30)
where | I') denotes the CSF belonging to S space. Equation

where EY’ and E§® are the zeroth-order energies of the CSF | B) and the state |B), respectively; that is,

EQ =2 pe, (p,=0,1, or 2),
P

EP= § (B| Eppl|BYep, (36)

where 11, is the occupation number and (B| E,,|B) the averaged occupation number. The set of suffix in the summation
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= Expression for resolvent is wrong!

= The expressions above (as well as all
other equations in primary MCQDPT
paper) assumes fully diagonal (and fully
one-body) H° both in P and S spaces

— This Is NOT TRUE in the case of MCQDPT
theory!
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= HOis indeed diagonal in the basis of
determinants or CSFs!

— In particular, it is diagonal in S space
— The SP and PS blocks are indeed zero

= However, it is not diagonal in P space!
— Proof (trivial):

Eg = Ecore T Zni(B)gi Eg’ — H,g,B — Z‘CBIB‘Z EICS)
B

active
orbitals

H?, =Y Cg'C{Eg #0,and thus Hy; is not diagonal!
B
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HO is

“slightly” non-diagonal

— Expression for resolvent is not correct

From this point now on the rest of all MCQDPT
working equations is absolutely senseless

Hence, any essentially MCQDPT2 type (not just
MR-MP2-like) results obtained so far are in turn
just more or less erroneous

Final
and t
simp

y, this makes MCQDPT as well as DETPT
neir generalization for non-CAS type MCSCF

y the completely senseless and useless

“theories” that should not be used anymore
— However, see Appendix | if you still like MCQDPT
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= XMCQDPT

— Just the correctly formulated MCQDPT that explicitly
takes into account the non-diagonality of H°,,
— HYis exactly as given by Eqgs. 26-27
= Strictly one-particle operator
— V Is exactly as given by Eqg. 31

= XMCQDPT2

— Only P-S energy contributions are nonzero at second
order

= See Appendix Il for the rigorous proof of vanishing all pure intra-CAS
contributions at second (and higher) orders

— Unlike MCQDPT2, straightforward implementation
requires solution of huge number of small (with N by
N matrix) systems of linear equations instead o
direct summation over states

= Straightforward approach would then mean the death of
Firefly’s ultra-fast direct summation code

= XMCODPT2 in Fireflv uses more clever approach!
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130
. If L _|[HwtVy  H

ps

Hsp Hsos +Vss
= Then, using Van Vleck-type PT expansion one

gets (see Appendix Il for methodology) :
_ Y _
hy=H_,, h =V,

h, = %[H Vi +V; H ], where v, is defined

by the following linear equation :

0,, __ 0
H, +H Vv, =v,H y



If H, +H_ v, =v,H_ isheld, then:
H, O +H(v,0)=(v,0)(O'H  O)

Using h, = E[H Vi +V; H ], one gets:

0'h,0 = {(0"H ,)(V0) + (0", )(H O]
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= h, has trivial (and very nice) transformation properties
with respect to rotations of basis in model space!

= We just need to diagonalize H gp and transform

reference Cl vectors accordingly:
— H%is now fully diagonal in S+P!

— The working equations of MCOQDPTZ2 do not assume
the reference vectors are Cl eigenvectors!

= Thus, we can easily apply the existing state-of-the-art
Firefly’s MCQDPT?2 code to perform XMCQDPT?2
calculations by using rotated Cl vectors (intermediate
basis)!
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True 1-particle MP2-like H°
Nice invariance properties

Completely equivalent to MR-MP2 for single-reference
case

Unlike MCQDPT?2 it is stable with respect to model space
extension

— The limit is just the fully uncontracted theory

Does not result in artificially large off-diagonal elements

— Note — large off-diagonal element of H°, ) typically corresponds
to large off-diagonal in MCQDPT2 calculations

= We can predict MCQDPT?2 failures by just examining H° !
Gives very good results typically

— We already have statistics over hundreds of tests
27



**% MATRIX H(O)pp ***
1 2

1 -681.5735897
2 -681.3809372

*** CI TO INTERMEDIATE BASIS TRANSFORMATION MATRIX ***
1 2

1 0.9558037 -0.2940056
2 0.2940056 0.9558037

A



HHHHHHHHH R HH R R H R
HHt MC-XQDPT2 RESULTS ###
HHHRH AR R R
*** EFFECTIVE HAMILTONIAN (0-2) ***

1 -9.897413D+02
2 -9.896682D+02

S0-S1 transition energy: 614 nm!
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= |t’s simply with Firefly:
— Just use iInstead of SMCQDPT

= All keywords are the same as in SMCQDPT group
= And sure it works with as well

30



= Dr. Vladimir I. Pupyshev

31



Thank you for your attention!
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Appendix |
The true H® used in

derivation of MCQDPT?2
theory



= For the very specific choice of HY, as well as the
specific basis in P space, the MCQDPT2
equations are still valid!

= | et:
— P denotes the model space spanned by reference CI

vectors,
= Important: basis in P is formed by the reference Cl vectors
themselves

— Q denotes the complement of P inside CAS

— S denotes the set of singly and doubly excited CSFs or
determinants taking all CSFs from CAS space as

references

34



= Let's denote true H®° of MCQDPT2 as H°

as opposed to H° given by Eqg. 26

= P-P block: H°

true

H gptme = Z a><a

04

IS diagonal and is:

HO

true?

a)a

— where summation runs over Cl vectors in model

space
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= P-Q (Q-P) and Q-Q blocks are arbitrary (see
Appendix Il)

= S-S block:

H 0 i H 0
SS’[rue N SS
= All other blocks are zero
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= HO_ . is absolutely non-invariant

= |t is evident that by this definition H®, . is
many-particle operator for any non-trivial
model space

— Hence, the perturbation is many-particle
operator as well

= Seems to be the main sources of problems
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Appendix Il
Rigorous proof of the absence
of Intra-CAS Interaction at
second order of XMCQOQDPT
(very trivial fact actually)



= P |s the model subspace, spanned by
reference CAS vectors

= QIs the I-P subspace, where | is the
identity inside of the CAS Hamiltonian

= The particular choice of basis set inside P or
Q Is arbitrary
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-0 0 _
H PP +Vpp H P +qu

1= o oy HO Ly
L qp+ ap qq+ a9

V,, = —H,, as offdiagonal

ap P
blocks of H are zero



U'HU =H_

where: U'U =1

For known U, UU, Is also solution for some unitary U,

Hence, there is some freedom in choice of U .



1+u, +u, +...
V,+V, +...
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{1+u1+u2+_1W?+¢h+u2+“. )

V, +V, +... V, +V, +...

1+u,+U, +...
}:h+uf+u;+_” w++w++m{ P

V, +V, +...

This means that:

A+u” +u, +.)A+u +u, +0)+ (v v L)+, ) =1

+ + + +
1+u +u +U, +U,+V, V,+U U +..=1
And hence:

u,” +u, =0, u,"+u,+v, v, +u, U,...=0 (Eq.1)
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u, IS square anti-Hermitian

U, above Is arbitrary and thus we can define
U, as needed for simpler expressions

Let's choose u, =0

Eqg. 1 does not Impose any restrictions on

anti-Hermitian part of u,

— Let’s choose u, to be symmetric
= Simply corresponds taking U, = | up to second order:

_|_

u, =u,,

U,

1 .
:_Evl v, (Eg.2)
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H> +V_ HY +V_ [ 1+u,+...
Hey = U HU =[1+U2++..., V1++V2++___ H%p Vpp H%q qu { 2 }
ap T Vg aq TV V2t VoTt..

:[1+u2++..., v1++v2++.{ ] X ; !
qu +qu + quu2 + quvl +quv1 + quv2 + ...

Hoo +Vo, +Hou, + (Ho +Vo v+ H v, + .. }
=(1+u," +..)(Hp, +V, + Hou, + (Ho, +V o )V + Hov, +...)

0

+ + 0 0 0
+(vy +V, +.)(Hyp +V, +Hpu, + Ho v +V v+ H v, +.0) =

_ 0 0] 0 0 + 0]
= H o +VIOIO + H Uz + H oo V1 +va1 + H oqVo T Uy Hoo

+ 0] + 0 + 0
+V, qu-|—V1+qu-|—V1 Ho v, +V, Ho +... (EQ.3)
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H.. Hf+Hf+Hf+(Eq4)
From Eq. 3:

H . °=H® (Eq.5)

PP

Hy =V, +HV, +Vv,"HS  (Eq.6)

ap

H eff
0] + 0

+H oV, +V v, + v1+qu +v, Hg, (EQ.7)

2 140 +1 40 +1 40
=H_ u,+u, H  +v, H v +
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[0 0 0 0

F%p+VW+Fﬂ@q+vmw+4ﬂw%444mw+n”
0] 0] 0] 0]

_th+vw+44mw;ery2+Vmw;kaN2+".

140 0 r
H,+V, H+V, | 1+u,+..

1+u, +.

VY,

0] §

0 1 2 0

Hy +Hy +Hg +UHg +..
0 1 0

ViH  +VH " +V,H o +..

0] 0
_Fup+V® th+vm_)ﬁ+v2+“.

0 1 2
[Hy +Hege +Hye™ +...]
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[ 10 0 0 0
H o +Vpp + H oV +quv1 +H Uz + H oqVo T

0 0 0 0
I qu +qu + quv1 + quu2 +quv1 + quv2 +o

0] 1 2 0]
Hy +H +H, +UH o +..

0 1 0
VlHeff +V1Heff +V2Heff T ...

means

0 0 0 0 . 0 1 2 0
pr +Vpp+Hpqv1+quv1+pru2+Hpqv2+...—Heff +H +Hge +UH +...

and
0] 0] 0] 0] 0] 1 0]
qu +qu+quvl+quu2 +quv1+quv2+...=leeff +VH  +V,H, +...

(Egs. 8)
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1 0 + 0
Hy =V, +H v +Vv, Hy
and
Hy =V, +HSv
eff — Y pp pg 1
and

0o 0  140,, _ 0 g0, _
H ao VlH eff H qul qu B VlH pp H qul qu
and hence:

Heff1 :Vpp’
v, =0, u, =0, (EQs.9)
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