The PC GAMESS project at
MSU: optimization tutorial

Alex A. Granovsky

Laboratory of Chemical Cybernetics, M.V. Lomonosov
Moscow State University, Moscow, Russia

November 1999, Intel Oregon

Outline

m The PC GAMESS project.
B Optimization technigues.
m The PC GAMESS performance samples.

The PC GAMESS project

What I1s Quantum Chemistry?

B Quantum Chemistry (QC) Is the science based on
applications of the first principles of guantum
mechanics to studies of chemical systems.

m All chemical systems are treated as sets of
electrons and nuclel. Solutions of the Schrodinger
Egquation contain information on all molecular
properties.

B [he molecular Schrodinger Equation ought to be
solved approximately to get the properties of the
molecular system of interest.

What 1Is GAMESS?

m GAMESS means General Atomic and
Molecular Electronic Structure System.

B GAMESS (US) is being developed and
maintained by the members of the Gordon’s
research group at lowa State University.

H Today It IS the most popular non-
commercial QC package.

How GAMESS Is used In
chemical research?

B To predict structures of both equilibrium and
transition states of molecules In various electronic
states.

B To calculate various molecular properties like dipole
moments, polarizabilities, atomic charges, and so
forth.

B To predict and interpret molecular spectra.

B To calculate sections of molecular Potential Energy.
Surfaces (PES) and to get various dynamical
parameters like lifetimes, reaction rates, and so forth.

H Fast.
m Chea
m Best

Why PC?

0.
orice/performance ratio.

B Huno

reds of millions PCs over the world.

Why (PC) GAMESS?

m Non-commercial.

B Program sources are available.

m \Well-known and trustworthy.

m Broad functionality.

m Variety of available calculation methods.

The PC GAMESS project initial
goal:

B To create GAMESS version which will run
as fast as possible on Intel-based systems.

What 1s the PC GAMESS?

The PC GAMESS Is our freely-

avallable Intel-specific version of the
GAMESS (US) program.

By now, approximately 400-600 users
(10-15% ofi all GAMESS users) over
the world.

The PC GAMESS key features:

Strongly modified to achieve the maximum possible
performance on Intel-based platforms;

Functionally extended to provide QC methods which are not
currently present in the regular GAMESS version;

Written to support both shared memory (via multithreading
on SMP systems) and distributed memory (via MPI on LANS
and PC clusters) parallel models of execution;

Runs on all popular PC Operating Systems:

& Win32: NT (the base OS for PC GAMESS) & Win9x
o Linux (only partial support at present)

& 0S/2

Different executables tuned for Pentium, Pentium Pro,
Pentium Il and Pentium 11 CPUs.

Current goals of the PC
GAMESS project:

m Support of modern high-level highly-
correlated calculation technigues.

m Better SMP support.

m Better distributed memory parallel
algorithms.

m Better performance on new Intel’s CPUS.
m Better Linux support.

The PC GAMESS on the Web:

m http://classic.chem.msu.su/gran/gamess/index.html

Optimization techniques

Common problems of all QC
packages:

m Non-uniform guality of program sources.
m Variety of algorithms and data structures.
B Both sparse and dense data.

m Huge CPU, memory, and disk space
requirements.

\What has been done to GAMESS to
make 1t PC GAMESS?

B Source-level changes.
m Intel-specific optimization.

m Support of parallel execution (both SMP
and distributed memory systems).

m Fast I/O and memory management.
m Development of our own QC code.

Structure of the PC GAMESS code:

5%
11% 9%

m Slightly modified

GAMESS code
m Modified GAMESS
code
18% m Fully rewritten
S GAMESS coc_le |
New code written in
MSU
PC GAMESS low-
level libraries
® Third-party code

33%

Source-level changes

Source-level changes:

m Multiple bug fixes.

m Multiple source-level changes to Improve
performance.

m Multiple changes in the internal data
structures.

m Multiple modules have been entirely
rewritten to speed up the program.

Source-level changes: key ideas

m Basic rules:

Choice of optimal calculation strategy with
minimal number of operations, memory and disk
requirements.

IMemory access optimization by changing data
layout.

L_oop simplification.

L_oop splitting. Avoiding multiple data streams at a
time.

Divide removal.

Complex code simplification. Data dependence
removal.

Source-level changes: key Ideas

B Dense data case:

Reformulation of algorithms in terms of linear
algebra objects, If possible

Extensive use of BLAS routines.
BLAS level 3 usage is highly preferred.

Source-level changes: key Ideas

B Sparse data case:

Moving from unstructured sparse data to dense
data with block structure, If possible.

Use of BLAS and sparse BLAS extensions,
When appropriate.

Use of efficient assembly-written routines.

Source level changes: Example #1
Divide removal:

mS =2 a/b;

mldea: a,/b,+a,/b, =(a,b,+b,a,)/b,b,
a = a(l)
b = b(1)
do 1=2,n
a = a=b(r) + b=a(n)
b = beb(I
end do
S = a/b
B One divide — three multiply.
B Potential problem: EP overflow/underfiow.

Source level changes: Example #2

Matrix-matrix multiplication:
BY =CoXeC, = (C;2X)eC, = Co(X=C,)
m Dimensions: C; m by n, X n by n,
C, nbyk, andY m by k.
m Number of FP operations:
First way: 2emenen + 2emenek
Second way: 2ekenen + 2emenek
Difference: 2e(m-k)en?
m Conclusion: the order of multiplications
can be very important.

Source level changes: Example #3

Sparse data reordering:

m Z = XeY, matrices X and Y have many zero elements (e.g.,
due to symmetry).

o R—

m After reordering of lines and columns of matrices:

0 0 0
_ o
0 0 0

m Only nonzero blocks should be multiplied.

Source level changes: Example #4

Fock matrix update: changing memory layout.

Initial code version:
DIMENSION D(*), F(*)., IA(®)

DO M=1,NINT
GET NEXT V AND CORRESPONDING INDICES I,J,K,L
NIJ = TIA(1) + J
NIK = TIAC(1) + K
NIL = TAC(1) + L
NKL = TAC(K) + L
NIK = TA(MAX(J,K)) + MINCI,K)

NJL = TAQMAX(JI,L)) + MINCI,L)

V4 = V*4.0DO

— F(NIJ) = F(NIJ) + VA*D(NKL)
— F(NKL) = F(NKL) + V4*D(NIJ)
— FONIK) = FONIK) - V. *D(NJL)
— F(NJIL) = F(NJL) - V. *D(NIK)
— F(NIL) = F(NIL) - V *D(NJK)
— F(NJK) = F(NJK) - V. *D(NIL)

END' DO

Source level changes: Example #4

m Problem: Why the code above Is slow?

The consecutive values of indices N1J, NIK,
NIL, NKL, NJK, and NJL usually show no
regular patterns.

On each Iteration, 12 cache lines are fetched,
and 6 of them are modified.
B Solution:

Use of different memory layout. Convert arrays
D and F into one structure, aligned on the cache
line boundary.

In this case, only 6 cache lines are fetched and
modified on each Iteration.

Source level changes: Example #4

Fock matrix update: changing memory layout.

Code with data locality improved:
STRUCTURE /D _F/
DOUBLE PRECISION D,F
END STRUCTURE
RECORD /D_F/ DF(*)

DO M=1,NINT
DE(NIJ).F = DF(NIJ).F + VA*DF(NKL).D
C DFE(NKL) .F = DF(NKL).F + VA*DF(NIJ).D
DF(NIK).F = DF(NIK).F - V *DF(NJL).D
C DF(NJL).F = DF(NJL).F - V *DF(NIK).D
DE(NIL).F = DF(NIL).F - V *DF(NJK).D
L DE(NJK).F = DF(NJK).F - V *DF(NIL).D

END' DO

Source level changes: Example #4

Fock matrix update: data dependence removal.

m Compiler-generated code is still slow because

statements #1-6 should be executed in order (some
of indices can occasionally coincide):

DO M=1,NINT

SE&NlJ)-F = DF(NIJ).F + V4*DF(NKL).D I (1)

/

DF(NKL).F = DF(NKL).F + V4*DF(NIJ).D ! (2)

/

DE(NIK).F = DF(NIK).F - V *DFE(NJL).D ! (3)

/

DE(NJL).F = DF(NJL).F - V *DF(NIK).D I (4)

/

DE(NIL).F = DF(NIL).F - V *DF(NJK).D ! (5)

/

DE(NJK).F = DF(NJK).F - V. *DF(NIL).D ! (6)
END DO

Source level changes: Example #4

Fock matrix update: data dependence removal.
B In most cases (95-99%), all indices are different.

m Possible solutions:

©® Check for coincided indices and handle this case
separately, otherwise ignore data dependence.

® Separation of data with coincided Indices Into
special arrays or records. In general case, ignore
data dependence. Handle special cases separately.

® Removal of data dependence by using several
temporary data records (next slide).

o Use of special highly-optimized assembly-
Written routine.

Source level changes: Example #4

Fock matrix update: data dependence removal.

Code with partially removed data dependence:

RECORD /D_F/ DF1(*), DF2(*),

DO M=1,NINT
5Ei(NlJ)-F = DFL(NIJ).F +
\
DFL(NKL).F = DFL(NKL).F +
DF2(NIK).F = DF2(NIK).F -
I:DFZ(NJL).F = DF2(NJL).F -

I:DFB(NIL)-F = DF3(NIL).F -

DE3(NJIK) .F = DF3(NIK).F -
END DO

DE3(*)

V4*DFL(NKL) -

VA*DFL(NIJ) .

V' *DFE2(NJL) -

\/ *DF2(NIK) -

V. *DF3(NJK) -

V. *DF3(NIL) .

D

D

D)

D)

D)

D)

1 (D)

1 (2)

N E)

Source level changes: Example #5

External exchange contributions: loop splitting.

Initial code (simplified model):

DO M = 1,NINT
GET NEXT V12P,V13P,V23P, AND CORRESPONDING INDICES 1,J,K,L

IAL = 1A(QD)
1A = 1AQJ)
IAK = 1A(K)
1J = 1Al + J
KL = IAK + L

EMP3P = EMP3P + V23P*DDOT(NPAIRS,CijAO(L,1J),1,CijA0(L,KL),1)

IL = IAl + L
JK = 1AJ + K
EMP3P. = EMP3P + V12P*DDOT(NPAIRS,CijAO(L,IL),1,CijA0(L,JK),1)

IK = IAI + K
JL = IAJ + L
EMP3P = EMP3P + V13P*DDOT(NPAIRS,CijAO(L,IK),1,CijA0(L,JL),1)
END DO

m Comment: all data reside in L2 cache.

Source level changes: Example #5

External exchange contributions: loop splitting.

New code (up to 50-80% faster):

DO M = 1,NINT

EMP3P = EMP3P +
V23P*DDOT(NPAIRS,Ci jJAO(Z, 1J),1,CijA0(1,KL),1)
END DO
DO M = 1,NINT

EMP3P = EMP3P +
V12P*DDOT(NPAIRS,Ci JAO(L, IL),1,CijA0(1,JK),1)
END DO
DO M = 1,NINT

EMP3P = EMP3P +
V13P*DDOT(NPAIRS,Ci JAO(L, 1K), 1,CijA0(1,JL),1)
END DO

m Note: all data still in L2 (not LL1) cache.

Source level changes: Example #5

External exchange contributions: loop splitting.

m \Why new code Is faster?

Each loop iteration uses only two data streams!

Intel-specific optimization

Intel-specific optimization:

m Intel-specific source-level optimization.

m Creation and use of highly-optimized low-
level library of the QC primitives (LQCP).

m Extensive usage of BLAS level 3 (MKL).

m CPU type, L1, and L2 cache size
autodetection. This information Is used for

automatic fine-tuning by several time-
critical parts of the PC GAMESS.

Where assembly code (LQCP) was
Introduced?

Contents of the LQCP library
25

® Real time data
packing &
unpacking code

m Time-critical QC-
specific code

Time-critical
complex service
code

m BLAS
exstensions

22

Why assembly code (LQCP) was

Introduced?

B Assembly-written code Is the fastest.

m Different versions of library are fine-tuned for
different Intel’s CPUs.

H Assem
depenc

B Assem

oly-written library reduces the
ence on compiler’s guality and reliability.

oly-written code allows one to use new

CPU Iinstructions (e.g., cache-manipulation).

B Assembly-written code allows creation of fast
OS-independent SMP synchronization
primitives.

How to improve performance of
assembly code?

m TVypical problem: not enough integer
registers.

m Idea: esp can be used as an additional base
pointer.

m How does It work:

Additional space for the temporary stack should be
reserved as the part of the data to be processed.

On entry, routine switches to this temporary stack.

It IS now possible to use esp to address data because the
offset to the data block Is known and it Is fixed.

On exit, old stack Is restored.

Use of optimized libraries

Use of optimized libraries.

m Two basic libraries: MKL and LQCP.

m Goal: optimized libraries should be used as
extensively as possible.

B Tools: code and data structural changes to
allow usage of optimized libraries.

Use of optimized libraries: Example.

Original code seguence:

DO MB=1,NVIR
DO MJ=1,NOC
DO MK=1,NOC
DO MA=1,NVIR
MAI = IA(MA+NOC)
TERM = T(MA,MJ,MK)
DO MI=1,NOC
MAL = MAI+1
DIKAB = E(MI) + E(MK) - E(MA+NOC) - E(MB+NOC)
PCMI,MI) = P(MI,MI) - TERM*X(MK,MAI ,MB+NOC)/DIKAB
END DO
END DO
END DO
END DO
END DO

Use of optimized libraries: Example.
First step:

DO MB=1,NVIR
DO MK=1,NOC
DO MA=1,NVIR
MAI = TA(MA+NOC)
DO MI=1,NOC
MAI = MAI+1
DIKAB = E(MA+NOC) + E(MB+NOC) - E(MI) - EQVK)
X(MK ,MAT ,MB+NOC) = X(MK,MAI ,MB+NOC)/DIKAB
DO MJ=1,NOC
PCMI,MI) = PCMI,MI) + T(MA,MI, MK)*X(MK,MAT ,MB+NOC)
END DO
END DO
END DO
END DO
END DO

Use of optimized libraries: Example.

Second step, loop #1:
DO MB=1,NVIR
DO MA=1,NVIR

MAI = IA(MA+NOC)
DO MI=1,NOC

VAL = MAI+1

DO MK=1,NOC

DIKAB = E(MA+NOC) + E(MB+NOC) - E(MI) - EQVK)
X(MK ,MAT ,MB+NOC) = X(MK,MAI ,MB+NOC)/DIKAB
END DO
END DO
END DO
END DO

Use of optimized libraries: Example.

Second step, loop #2:
DO MB=1,NVIR
DO MK=1,NOC
DO MJ=1,NOC
DO MA=1,NVIR
MAI = TA(MA+NOC)
DO MI=1,NOC
MAT = MAI+1
P(MI,MJ) = P(MI,MI) +
T(MA , MJ|, MK)*X(MK , MAI , MB+NOC)

END DO
END DO
END DO
END DO
END DO

Use of optimized libraries: Example.

Third step, loop #2:

DO MB=1,NVIR
DO MK=1,NOC
DO MJ=1,NOC
DO MI=1,NOC
DO MA=1,NVIR
MAI = TA(MA+NOC) + MI
P(MI,MJI) = P(MI,MJI) +
TQVA ,MJ, MK)*X(MK , MA T , MB+NOC)

END DO
END DO
END DO
END DO
END DO

Use of optimized libraries: Example.
Fourth step, loop #2:

DO MB=1,NVIR
DO MK=1,NOC
DO MI=1,NOC
DO MA=1,NVIR
MAI = IA(MA+NOC) + MI
Y(MA,MI) = X(MK,MAI ,MB+NOC)
END DO
END DO
— DO MI=1,NOC
DO MJ=1,NOC
DO MA=1,NVIR
P(MI,MI) = P(MI,MJ) + Y(MA,MI)*T(MA,MJI,MK)
END DO
END DO
— END DO
END DO
END DO

Use of optimized libraries: Example.

Fifth step, loop #2:

DO MB=1,NVIR
DO MK=1,NOC
DO MI=1,NOC
DO MA=1,NVIR
MAI = IA(MA+NOC) + MI
Y(MA,MID) = X(MK,MAT ,MB+NOC)
END DO
END DO

CALL DGEMM(=T™,*N",NOC,NOC,NVIR,1.0D0,Y,NVIR,
T(1,1,MK),NVIR,1.0D0,P,NOC)
END DO
END DO

Use of optimized libraries: Example.

Finally, eliminating loop #1.:
DO MB=1,NVIR
DO MK=1,NOC
DO MI=1,NOC
DO MA=1,NVIR
MAI = TA(MA+NOC) + MI
DIKAB = E(MA+NOC) + E(MB+NOC) - E(MI) - E(MK)
Y(MA,MI) = X(MK,MAI,MB+NOC)/ DIKAB
END DO
END DO
CALL DGEMMCET®, *N*,NOC,NOC,NVIR,1.0D0, Y , NVIR,
T(1,1,MK),NVIR,1.0D0,P,NOC)

END DO
END DO

Parallelization

Support of parallel execution:

m SMP Is supported via multithreading.

m Parallel (MPI-based) PC GAMESS version
for Win32-based LANSs and clusters.

SMP parallelelization

SMP parallelization.

m Multithreading 1s optimal parallelization
strategy on shared memory parallel systems.

m Benefits:
More efficient.
Uses less system resources.
No unnecessary code and data duplication.
Simple 1/O control and I/O optimization.

B Drawbacks:

Multithreaded code Is more complex.

Multithreading requires significant changes In data
layout. No calculations in COMMONS, only in
automatic and dynamic data structures.

SMP parallelization: different ways.

The simplest way:
Use of MKL built in multithreading.
B Benefits:

Takes no additional efforts.
Fully transparent.
Good scaling If large matrices are used.

B Drawbacks:

Win32-specific solution.

Many QC methods do not allow efficient formulation in terms
ofi matrix-matrix multiplications or LAPACK routines.

Matrix-formulated QC methods usually deal with relatively
small matrices (e.g., from 100x100 to 500x500). Hence, the
scaling I1s usually not very good on four- and eight-CPUs
systems.

SMP parallelization: different ways.

The best way:
Native support of multithreading.

B Benefits:
Wider applicability.
Better performance.
Better scaling.

B Drawbacks:
Requires development of new algorithms.

Requires data structural changes.
Takes additional programming efforts.

SMP parallelization: Real Life.

B Combination of both MKL-level and native
multithreading models.

Use of MKL-level multithreading:
+ Large matrices.

+ Complex matrix-based algorithms which are still to
be rewritten to use native multithreading.

Use of native multithreading:

+ QC algorithms which cannot be formulated in terms
ofi matrix-matrix multiplication.

+ Matrix-based QC algorithms which were already
rewritten to use native multithreading.

+ Asynchronous I/O.
B Our priority: purely native multithreading.

SMP parallelization:
OpenMP vs. manual multithreading.

m Use of OpenMP

Benefits:

+ Easy to use.

+ Industry standard.

+ Portability across OpenMP-aware Fortran compilers.
Drawbacks:

+ Reguires use ofi OpenMP-aware Fortran compiler.

SMP parallelization:
OpenMP vs. manual multithreading.

m Use of manual multithreading

Benefits:
+ Potentially better performance.
+ Simpler memory usage control.
+ Flexibility.
+ Wider portability across different OS and Fortran
compilers.

Drawbacks:
+ Requires much more programming efforts.

OpenMP vs. manual multithreading:
Real Life.

B Current status:
Use of manual multithreading exclusively:.

B Main Reasons:
Watcom compilers do not support OpenMP.

Simpler memory usage control.

E Year 2000 plans:
Moving to PGI compilers.
Test OpenMP-parallelized code versions.

Switch to OpenMP 1f no or little (e.q. <5%0)
performance degradation.

Manual multithreading and
GAMESS legacy code.

m Key problem:
old GAMESS code uses common blocks to pass parameters
and to perform calculations (e.q., 2-electron integral code, 2-
electron gradient and hessian code).

m SMP-capable code should:
Be reentrant.
Receive all parameters as routine arguments.
Receive some arguments by value.
Perform all calculations using dynamic and automatic data
structures only.

m Solution:

Code and data changes to meet these reguirements (Work in
progress).

Manual multithreading and
GAMESS legacy code.

B Comments:

Some performance penalty due to use of
dynamically allocated data.

Code change requires large amount of time.

Use of mixed SMP/MPI strateqy on SMP
systems as a temporary solution.

OpenMP usage will probably greatly
simplify this transition.

SMP parallelization: Threads
synchronization objects.

m OS-level synchronization objects.

Benefits:
+ No dummy wait loops consuming CPU resources.

+ More CPU resources for other threads, processes,
and OS itself.

Drawhacks:
+ Slow due to large system overhead.
+ Different API and functionality on different OSes.

SMP parallelization: Threads
synchronization objects.

B Application-level synchronization objects.

Benefits:
+ Fast.
+ Portable across different OSes.

Drawbacks:

+ Dummy wait loops consume CPU resources.

+ Less CPU resources for other threads, processes, and
OS itself.

Threads synchronization objects:
Real Life.

m Mixed approach.

Use of OS-level synchronization If:
+ Long delays.
+ Serious Impact on program or system performance.

Use of application-level synchronization If:

+ Short delays.

+ No or little impact on program or system
performance.

Distributed memory
parallelization

Distributed memory parallelization:
Current status.

m Mainly inherited from the original
GAMESS code.

m MPI-based.

m Static load balancing.

B Supported by Win32-based PC GAMESS
versions (using WMPI v. 1.2).

m Compatible with most of the new code
which Is PC GAMESS specific.

B Compatible with SMP parallelization.

MPI1 and SMP parallelization: Basic
concepts for new code development.

Thread-safe programming style.

m MPI parallelization over outermost loops, SMP

Reduce communications costs as

parallelization over inter- and innermost loops.

much as

nossible, duplicate data If necessary.

m If SMP parallelization ofi some computational

stage Is Impossible or multithreac
be developed, use MPI-based coc

ed code Is still to
e to perform this

step on SMP system. Then, switc
mode, and so forth.

1 back to SMP

Parallelization sample:
MPA4(T) energy calculation.

Skeleton of the simplified MP4(T) enerqy code

DO 1=1,NOC

DO J=1,NOC
DO K=J,NOC

GET NECESSARY DATA

DO MC=1,NVIR
CALL DGEMMQ)
CALL DGEMMQ)
REORDER RESULTS

END DO
DO MC=1,NVIR
CALL DGEMM(Q)
CALL DGEMM(Q)
REORDER RESULTS
END DO
DO MC=1,NVIR
CALL DGEMMQ)
CALL DGEMMQ)
END DO
EVALUATE CONTRIBUTION TO MP4(T) ENERGY
END DO
END DO
END DO

These loops are distributed
over different nodes

These calculations
are distributed over
CPUs on one node.
Each node has all
necessary data.

|/O optimization

Fast I/O and memory management:

m Fast non-Fortran file 1/O with large files and
asynchronous I/O support.

m Real time data packing/unpacking
technology.

B Advanced memory management
technology.

How QC programs use 1/O?

H Bot
H Bot
H Bot

N sequential and random 1/0O.
n fixed and variable-size records.

n small and large records.

m Typical strategy: write once, read multiple.

ml/O

operations are usually intermixed with

data processing.

m |_arge file sizes.

|/O optimization.

Fortran I/O vs non-Fortran 1/0.

m Fortran 1/O:
Slow (multi-buffered).
Limits maximum file size (2 or 4 GB).

Synchronous.

m non-Fortran I/O:
Fast (uses OS-level API directly).
Uses OS advanced |/O features.
Supports large files.
Allows transparent use ofi asynchronous |/O.

Flexible.

How non-Fortran 1/O IS
Implemented?

m In GAMESS, all unformatted I/O operations are
always performed as calls of the dedicated 1/O
routines (Fortran written).

B These routines check for non-Fortran 1/O usage. If
enabled, they call high-level functions from the
non-Fortran I/O module (C written).

m High-level non-Fortran /O functions calls low-
evel I/O functions.

m Low-level I/O functions call Operating System |/O
API functions (Win32 and OS/2 are currently

supported).

|/O optimization.
Why asynchronous I/O Is Important?

W Increases overall I/O throughoutput.
m Hides I/O latencies.

B Improves performance allowing
simultaneous data processing and I/O.

|/O optimization.

Where asynchronous I/O Is important?

m Sequential 1/O:
Write operations are asynchronous on OS level.
Read operations are used more frequently.
Intensive reads are usually synchronous.
Conclusion: asynchronous reads are important.

m Random |/O:

Random writes are often a big problem for OS.
IHuge latencies due to disk mechanics.

Conclusion: boeth asynchronous reads and
Writes are important.

Asynchronous I/O implementation.

m Use of OS-level API:
Slow.
Unportable.
Difficult to Implement transparently.

Use of dedicated I/O server threads:
[Faster.
Portable.
Irransparent.

Asynchronous I/O implementation.

m Sequential (fully predictable) 1/O:
Allows fully transparent implementation.

B Random (unpredictable) 1/O:
Fully transparent implementation Is impossible.

Each 1/O reguest Is handled separately.
Explicit synchronization Is usually required.
More difficult to program and USse.

|/O optimization. Additional
hints.

m Use of higher priority for asynchronous I/O server
threads.

m Use of OS-specific I/O optimization hints (like
FILE_FLAG_SEQUENTIAL_SCAN).

B Record size alignment on cluster or disk sector
poundary.

m File truncation:

Seguential access files: truncate at zero length before
reusing for writing.

Random access files: never truncate before reusing for
Writing.

B Renewal of OS-level file handles.

o)
i
@
O
O
@
=
O
Z

Development of our own QC codes
which are the PC GAMESS specific:

m Fast MP2 energy/energy gradient modules.
m Fast MP3/MP4 modules with SMP and
narallel mode support.

m New modules for high-level calculations
based on coupled cluster approach (work In

progress).

The PC GAMESS performance
samples

The PC GAMESS performance.

Model chemical system:

38 atoms (C, N, O, H, S, Zn)
214 electrons

SCEF calculation

Number of basis functions (N) 216

Number of atomic integrals 150 millions
Number of SCF iterations 19

SCEF calculation running on four
CPUs.

y

m PC GAMESS on
two dual-CPU
Pentium [l Xeon
(500MHz,1MB L2
cache)-based
workstations, 512
MB RAM each

m GAMESS on
Origin 2000 SGI.
64 195&250 MHz
MIPS R10000
processors, 17
GB main memory

Elapsed time, min.

Integrals SCF stage

The PC GAMESS performance.

Model chemical system:

11 atoms (H, F, Cl)
68 electrons

MPA4(full)) calculation
Number of basis functions (N) 227
Number of FP operations ~ 43¢ 1012

MPA4(full) calculation running on cluster of four
P3XP (500 MHz, 1 MB L2 cache, 512 MB RAM).
PC GAMESS runs in SMP mode on each box.

3000

N
g1
o
o

2000

1500

1000

Performance, MFlops

500

MP4(full) parallel scalability testcase

Neore = 10, Noce = 34, Ny = 193, N = 227, C1 symmetry group

8

—
_— | 2244

/

/ 1501

/

754

2

3

Number of boxes used

	The PC GAMESS project at MSU: optimization tutorial
	Outline
	The PC GAMESS project
	What is Quantum Chemistry?
	What is GAMESS?
	How GAMESS is used in chemical research?
	Why PC?
	Why (PC) GAMESS?
	The PC GAMESS project initial goal:
	What is the PC GAMESS?
	The PC GAMESS key features:
	Current goals of the PC GAMESS project:
	The PC GAMESS on the Web:
	Optimization techniques
	Common problems of all QC packages:
	What has been done to GAMESS to make it PC GAMESS?
	Structure of the PC GAMESS code:
	Source-level changes
	Source-level changes:
	Source-level changes: key ideas
	Source-level changes: key ideas
	Source-level changes: key ideas
	Source level changes: Example #1
	Source level changes: Example #2
	Source level changes: Example #3
	Source level changes: Example #4
	Source level changes: Example #4
	Source level changes: Example #4
	Source level changes: Example #4
	Source level changes: Example #4
	Source level changes: Example #4
	Source level changes: Example #5
	Source level changes: Example #5
	Source level changes: Example #5
	Intel-specific optimization
	Intel-specific optimization:
	Where assembly code (LQCP) was introduced?
	Why assembly code (LQCP) was introduced?
	How to improve performance of assembly code?
	Use of optimized libraries
	Use of optimized libraries.
	Use of optimized libraries: Example.
	Use of optimized libraries: Example.
	Use of optimized libraries: Example.
	Use of optimized libraries: Example.
	Use of optimized libraries: Example.
	Use of optimized libraries: Example.
	Use of optimized libraries: Example.
	Use of optimized libraries: Example.
	Parallelization
	Support of parallel execution:
	SMP parallelelization
	SMP parallelization.
	SMP parallelization: different ways.
	SMP parallelization: different ways.
	SMP parallelization: Real Life.
	SMP parallelization: �OpenMP vs. manual multithreading.
	SMP parallelization: �OpenMP vs. manual multithreading.
	OpenMP vs. manual multithreading:�Real Life.
	Manual multithreading and GAMESS legacy code.
	Manual multithreading and GAMESS legacy code.
	SMP parallelization: Threads synchronization objects.
	SMP parallelization: Threads synchronization objects.
	Threads synchronization objects: Real Life.
	Distributed memory parallelization
	Distributed memory parallelization: Current status.
	MPI and SMP parallelization: Basic concepts for new code development.
	Parallelization sample: �MP4(T) energy calculation.
	I/O optimization
	Fast I/O and memory management:
	How QC programs use I/O?
	I/O optimization.
	How non-Fortran I/O is implemented?
	I/O optimization.
	I/O optimization.
	Asynchronous I/O implementation.
	Asynchronous I/O implementation.
	I/O optimization. Additional hints.
	New QC code
	Development of our own QC codes which are the PC GAMESS specific:
	The PC GAMESS performance samples
	The PC GAMESS performance.
	SCF calculation running on four CPUs.
	The PC GAMESS performance.
	MP4(full) calculation running on cluster of four P3XP (500 MHz, 1 MB L2 cache, 512 MB RAM). �PC GAMESS runs in SMP mode on eac

