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Introduction



Multiconfiguration Quasi-

Degenerate Perturbation Theories

= Most widely used

— MS-CASPT?2
= SS-SR-CASPT2
= MS-MR-CASPT?2

— MCQDPT2
— Recent development - QD-NEVPT?2
— And now the XMCQDPT2!

= All of the D-P-D type (note XMCQDPT2 limit is the
P-D theory).

= |nternally Contracted
— MS-CASPT2
— QD-NEVPT2

= Non-contracted
— MCQDPT2, XMCQDPT?2
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Selection of H;

= MCQDPT, MS-CASPT, QD-NEVPT2

— In the model space, H, is explicitly defined using
projectors to Cl vectors and is not invariant with respect
to unitary transformation of the model space. This
results to the non-invariant perturbation theories and
(artificial) many-particle nature of perturbation

« XMCQDPT

— In contrast, XMCQDPT uses definition of H, that is
iInvariant with respect to unitary transformation of the
model space. This results to the theory that is invariant
as well; with perturbation being the true two-particle

operator



MCQDPT: primary paper

J. Chem. Phys., Vol. 99, No. 10, 15 November 1993

Quasidegenerate perturbation theory with multiconfigurational
self-consistent-field reference functions

Haruyuki Nakano®
Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606, Japan

(Received 22 December 1992; accepted 13 August 1993)

A quasidegenerate perturbation theory based on multiconfigurational self-consistent-ficld
(MCSCF) reference functions is derived. The perturbation theory derived here is for multistate,
where several MCSCF functions obtained by the state-averaged MCSCF method are used as the
reference and an effective Hamiltonian is constructed by perturbation calculation. The energies
of states interested in are obtained simultaneously by diagonalization of the effective
Hamiltonian. An explicit formula of the effective Hamiltonian through second order is derived
as well as general formalism, and is applied to calculate potential curves of the system H,,
Be-H,, CO, NO, BN, and LiF. The results agree well with those of full configuration interaction
or multireference single and double excitation configuration interaction methods for both the
ground and the excited states.




Comment on MCQDPT

= As we have shown previously, the paper
above has several crude mistakes
— What is especially important is that the declared

form of the H, Is not actually the form used In
the MCQDPT approach



MCQDPT2: true H°

= Let's denote true H° of MCQDPT2 as H°

true?

as opposed to H° given in Nakano paper

= P-P block: H°

0
H pptrue

true

04

IS diagonal and Is:

a)a

HO

a)a

— where summation runs over Cl vectors ‘a> INn the

model space

9




MCQDPT2: true H° drawbacks

= HO . is absolutely non-invariant

= |t is evident that by this definition H°, . IS
many-particle operator for any non-trivial
model space
— Hence, the perturbation is many-particle
operator as well

= The main sources of various problems!
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Similar formulations

= Both MS-CASPT2 and QD-NEVPT?2 has the
same drawback as can be easily seen from
the equations given in the corresponding
papers. Below, the important relevant
statements will be marked in red.
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MS-CASPT?2

22 May 1998

CHEMICAL
PHYSICS
LETTERS

A

K

ELSEVIER Chemical Physics Letters 288 (1998) 299-306

The multi-state CASPT2 method

James Finley °, Per-Ake Malmqvist *, Bjorn O. Roos °, Luis Serrano-Andrés "

* Department of Theoretical Chemistry, Chemical Centre, P.O.B. 124, 5-221 00 Lund, Sweden
b Departamento de Quimica Fisica, Universidad de Valencia, Dr. Moliner 50, Burjassot, E-46100 Valencia, Spain

Received 3 October 1997 in final form 20 February 1998

Abstract

An extension of the multiconfigurational second-order perturbation approach CASPT2 1s suggested. where several
electronic states are coupled at second order via an effective-Hamiltonian approach. The method has been implemented into
the MOLCAS-4 program system, where it will replace the single-state CASPT2 program. The accuracy of the method is
illustrated through calculations of the ionic-neutral avoided crossing in the potential curves for LiF and of the valence-Ryd-
berg mixing in the V-state of the ethylene molecule. © 1998 Elsevier Science B.V. All rights reserved.




3. The multi-state CASPT2 method

Multl ST’ITE‘ CASPT2 (MS- C‘%SPT2) chooses a

(S: CASSCF), or CASCI states

d
2 la){al.
a=1
where d 1s the dimension of the reference space and
where, for MS-CASPT2, the reference states |a ) are
eigenfunction of Hj'",

panned by
the secondary space—6-
The model states \‘Iff) are the projections on the
exact states of interest ‘I‘I;) into the P space,

P|t,f,rp):\rffp0> (p=1.2,---.d). (18)

In Eq. (20). there is a separate partitioning for
each reference space ket |a )

H=Hg+7V* (a=1.2,---.d). (21)
An order-by-order expansion exists for 27,
DFP=14+07+0F+ -, (22)

where 27 has turbati factors V. The
G tdentical

¢ the ones used for SS-CASPT2.
HE= Y| BY BIF*IBY B+ L IkY{ klF k) k|
B k

S FeQ%+ 08 FUO8
(a=1.2.---.d), (23)
where the sum over [ includes all reference space
states. also |a@). By substituting Eq. (22) into Eq.
(20) and identifying the terms for the first order
(n=1). we get
(Eg —F*)Qfla)y = 0% Hla)

(a-':]__ d) (14)
where Eq. (23) and similar 1dent1t1es as in SS-
CASPT2 he een used (see Eqgs.

omparing Eqs. (14) and (24) we see that
NPla)y =0a) (a=1.2,---.d). (25

Hence, the multireference wave-operator 2 is
just a linear combination of SS wave-operators

=Y Q7 a)al.




QD-NEVPT?2

JOUENAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 9 1 SEPTEMEER 2004

A quasidegenerate formulation of the second order n-electron valence
state perturbation theory approach

Celestino Angeli, Stefano Borini, Mirko Cestari, and Renzo Cimiraglia®
Dipartimento di Chimica, Universita di Ferrara, Via Borsairi 46, I-44100 Ferrara, Italy

(Recetved 29 April 2004; accepted 11 June 2004)

The n-electron valence state perturbation theory (NEVPT) is reformulated in a quasidegenerate
(QD) approach. The new theory allows the treatment of cases where the proximity of the energies
causes artifacts in the zero order description. Problems of quasidegeneration are relevant in the
dynamics involving regions at avoided crossings (or conical intersections) and in spectroscopy
where the energies and oscillator strengths can be strongly influenced by the mixing of states of
different nature. Two test cases are analyzed concerning (a) the ionic-neutral avoided crossing in LiF
and (b) the valence/Rydberg mixing in the excited states of ethene. The QD-NEVPT2 is shown to
be a useful tool for such systems. © 2004 American Institute of Physics.

[DOI: 10.1063/1.17787
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%doptillg a partition of the Hamiltonian, = H,+ V, with
'D)‘{f (O} and resorting to a perturbation expansion
of () and H, ofF >

Q=P+0W4+ 0@ 4... (9)

Hys=HR+HP+HP+

one promptly arrives at order-by-order working formulas, of
which we report the first order term for (),

[QWMD H]=0VP (11)
and the terms up to the second order for H.¢.
(W =PH,P,
1) —
HY=pyrp=o,
2) _ (1)
HZ=proW,
In order to obtain a manageable formulation of the A3 op-
erator, the multipartitioning technique of Zaitsevskil and
Malrieu'® is adopted, consisting in the use of different parti-
tions of the Hamiltonian according to the various ¥ func-

m
tions of the model space,

H=Hy(m)+ V(m),

A

CAS
HD{HF}:PI!(OI}E;; \ 2 |‘|jm-’> {llfﬂi' |

m'=m

+ 2 |‘~|"”‘I m) E""Hm(\l““{mﬂ (16)

'\L,H

where the perturbers ‘~|’ i (m) are the ones generated by ¥ “j

via the-application of the excitation operators. This 1e'1ds to

the following expression for the application of Q) to a

model function "lf’(’:JI :

(1 (00 —
OOy O=

('Dl )
Elu E, E_,_ﬁ ()

|‘|f"]u.ui}(\|“ )(m)|H| W)

(17)

The expression for the H_gy matrix elements up to second
order are accordingly

{'\II;E;JI ﬂ.|\|f“|

A1 (0) B B (0
(W W (m ) )W (m ) | H| W )
; E'D' EE'E'{M}

m

(18)

Diagonalization of the H .4 matrix produces the approximate
rojections W, and eigenvalues E,, .




Where the Differences appear:
XMCQDPT2!
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XMCQDPT2 in Firefly —the clever

approach
- _
= |f e Hop Vo H .
Hsp Hsos +Vss
= Then, using Van Vleck-type PT expansion one

gets:

hy=H’ h, =V

1 pp’ pp’
h, = E[H WV +Vy H T where v, is defined
by the following linear equation :
0 0
Hg, + Hevy =Vv,H .



After some simple math
If H, +Hgv, =v,H_ isheld, then:

H. O+H (v,0) =(v,0)(O" H @)
Using h, = E[H Vi +V, H ], onegets:

0'h,0 = Z[(0"H,,)(v0) + (0%, )(H,,0)

18



What this mean IS:

= h, has trivial (and very nice) transformation properties
with respect to rotations of basis in model space

= We just need to diagonalize H gp and transform

reference CIl vectors accordingly:
— HO%is now fully diagonal in S+P

— The working equations of MCQDPT2 do not assume
the reference vectors are Cl eigenvectors

= Thus, we can easily apply the existing state-of-the-art
Firefly’s MCQDPT2 code to perform XMCQDPT?2
calculations by using rotated Cl vectors (intermediate
basis)
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Some nice XMCQDPT?Z2 properties

True 1-particle MP2-like HO
Nice invariance properties

Completely equivalent to MR-MP2 for single-
reference case

Unlike MCQDPT?2 it is stable with respect to
model space extension

— The limit is just the fully uncontracted theory

Does not result in artificially large off-diagonal
elements
— Note —large off-diagonal element of H°, ) typically

corresponds to large off-diagonal in MCQDPT2
calculations

= We can predict MCQDPT?2 failures by just examining H° ) 20



Preliminary conclusions

= What we can expect for non-invariant QDPT
theories Is:
— Weird behavior near geometries of CASSCF’s

conical intersections

= Sequence of non-invariance with respect to mixing of Cl
vectors

— Will be examined in this presentation

— The complete loss of size-extensivity if any

= Esp., random and artificially large off-diagonal elements of H
for large molecular systems

— Will not be addressed in this presentation
= Already was checked multiple times with MCQDPT?2

= Would need Petaflop Computer to model large systems with
MS-CASPT2 or QD-NEVPT2

— No need actually... the results are quite predictable

21



Experiment

22



Model system

= A, - A, conical intersection (CI) optimization
In allene molecule

= C. point group

= SA-CASSCF(4,4), 12 CSFs in A subspace
— 3 A + 1 A" orbitals

= GAMESS (US) style DH basis set (using

pure spherical harmonics)
— $BASIS GBASIS=DH NDFUNC=1 POLAR=DUNNING $END

= Exact geometry and basis set are
available from author upon request

23



Active space

24
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A, - A, Clin allene:

K9




A, - A, Clin allene —
just another view:




A, - A, Cl in allene: scan variables

Varl is CCC angle, Var2 is the simultaneous change of CCCH torsions
(degrees) for H atoms on the same carbon to vary degree of pyramidalization.
Exact Cs symmetry is enforced. Zero corresponds to CASSCF’s Cl geometry



Scans

(Note, shown on all plots is the energy delta between
two states.
Scan grid: 81 by 81 points.
Surface plots: 64 iso-surfaces)
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MR-IC-CISD, NState=2
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MR-IC-CISD, NState=6
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MCQDPT2, Heff: 2x2, ISA shift=0.02




MCQDPT2, Heff: 2x2, ISA shift=0.02
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MCQDPT2, Heff: 12x12, ISA shift=0.02
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SS-SR-CASPT2, Heff: 2x2




SS-SR-CASPT?2, Heff: 2x2
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MS-MR-CASPT2, Heff: 2x2
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XMCQDPT2, Heff: 2x2
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XMCQDPT2, Heff: 6x6
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XMCQDPT2, Heff: 12x12 (fully uncontracted limit)
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Conclusions

= The scan pictures are exactly as expected
— Note problems exist not only in CI vicinity but near the
entire avoided crossing manifold
= |t s just not enough to formulate arbitrary multi-
reference perturbation theory and then trivially
extend it to multidimensional model space

= The real problem is the proper initial formulation that
allows correct reformulation or extension for the
case of multidimensional model space
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Thank you for your attention!
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