Firefly and PC GAMESS-related discussion club



Learn how to ask questions correctly


Re^3: mcscf energy with different numbers of roots

Alex Granovsky
gran@classic.chem.msu.su


Hi Mark,

I fixed missed $end in your input, generated orbitals for three-state
sa-casscf, and ran two-state and five-state jobs using these orbitals.

I cannot confirm that CASSCF energies are the same.

For two-state SA-CASSCF:


 FINAL MCSCF ENERGY IS     -248.1545279418 AFTER  15 ITERATIONS

 -MCCI- BASED ON OPTIMIZED ORBITALS
 ----------------------------------

 STATE #    1  ENERGY =    -248.156145506

      CSF      COEF    OCCUPANCY (IGNORING CORE)
      ---      ----    --------- --------- -----
       51   -0.942722  221100
       55    0.060463  121101
       59    0.107271  121101
       62    0.062682  022101
       68   -0.100803  021102
       71   -0.111556  211110
       87   -0.194449  211110
      109   -0.139984  201120
      127    0.075022  211200

 STATE #    2  ENERGY =    -248.152910378

      CSF      COEF    OCCUPANCY (IGNORING CORE)
      ---      ----    --------- --------- -----
        1   -0.961798  222000
        5    0.133538  220002
       10    0.070634  022002
       34    0.098154  202020
       52   -0.063677  212100
       89   -0.050022  202110
      129    0.174534  202200


 -----------------------------------------------------------------------
 *** MC-XQDPT2 ENERGIES ***
 -----------------------------------------------------------------------
   STATE                       1ST ORDER                       2ND ORDER
     1     E(MCSCF)=     -248.1561455060     E(MP2)=     -248.9079919760
     2     E(MCSCF)=     -248.1529103775     E(MP2)=     -248.9047150085
 -----------------------------------------------------------------------


For averaging over five states:

 FINAL MCSCF ENERGY IS     -248.0521602867 AFTER  12 ITERATIONS

 -MCCI- BASED ON OPTIMIZED ORBITALS
 ----------------------------------

 STATE #    1  ENERGY =    -248.160581722

      CSF      COEF    OCCUPANCY (IGNORING CORE)
      ---      ----    --------- --------- -----
       51   -0.938413  221100
       55    0.078696  121101
       59    0.106778  121101
       62    0.067525  022101
       68   -0.106713  021102
       71   -0.122049  211110
       87   -0.192858  211110
      109   -0.141389  201120
      127    0.083731  211200

 STATE #    2  ENERGY =    -248.142663331

      CSF      COEF    OCCUPANCY (IGNORING CORE)
      ---      ----    --------- --------- -----
        1    0.961168  222000
        5   -0.140032  220002
       10   -0.074236  022002
       34   -0.096614  202020
       52    0.052533  212100
      129   -0.180044  202200

 STATE #    3  ENERGY =    -248.034961487

      CSF      COEF    OCCUPANCY (IGNORING CORE)
      ---      ----    --------- --------- -----
       11    0.594309  221010
       15   -0.051170  121011
       19   -0.068569  121011
       28    0.068025  021012
       32   -0.211827  211020
       71   -0.069418  211110
      127    0.715312  211200
      136   -0.091056  111201
      139    0.050888  012201
      144   -0.080666  011202
      149   -0.209935  201210

 STATE #    4  ENERGY =    -247.996749751

      CSF      COEF    OCCUPANCY (IGNORING CORE)
      ---      ----    --------- --------- -----
       53   -0.758161  122100
       55    0.129638  121101
       57    0.442667  220101
       59    0.302257  121101
       62   -0.106562  022101
       64    0.158318  120102
       73    0.098070  112110
       75    0.057152  210111
       90   -0.159442  112110
       92    0.092872  210111
       96    0.054112  111111
      112    0.114868  102120
      117    0.067192  200121

 STATE #    5  ENERGY =    -247.925845142

      CSF      COEF    OCCUPANCY (IGNORING CORE)
      ---      ----    --------- --------- -----
        2   -0.179547  221001
       52   -0.888610  212100
       63    0.125438  210102
       70   -0.069855  012102
       89   -0.359776  202110
      100    0.051520  200112
      129   -0.110300  202200



 -----------------------------------------------------------------------
 *** MC-XQDPT2 ENERGIES ***
 -----------------------------------------------------------------------
   STATE                       1ST ORDER                       2ND ORDER
     1     E(MCSCF)=     -248.1605817219     E(MP2)=     -248.9151665032
     2     E(MCSCF)=     -248.1426633312     E(MP2)=     -248.9055013189
     3     E(MCSCF)=     -248.0349614872     E(MP2)=     -248.7800596220
     4     E(MCSCF)=     -247.9967497511     E(MP2)=     -248.7466441649
     5     E(MCSCF)=     -247.9258451419     E(MP2)=     -248.7369833618
 -----------------------------------------------------------------------


See attached file. Note, I optimized your input file a bit.
However, I checked that this does not affect CASSCF results.
This does slightly affected QDPT results as I removed CSF
selection as it is intended for use with very large active spaces.
Thus, now QDPT procedure gives exact numbers rather than
approximations to these exact numbers.


Kind regards,
Alex Granovsky

On Mon Jul 11 '11 0:22am, mark huntress wrote
---------------------------------------------
>Hi, thank you Dr. Granovsky.
>  
>I think I should have been more specific in my explanation, because now I am not sure what you think I was saying I did.

>I was using WSTATE(1)=1, 1, 1     ( or   WSTATE(1)=1, 1, 1, 1, 1)    in the $GUGDM2 group, not in the $xmcqdpt group.
>I was using KSTATE(1)=1, 1, 1 in the $xmcqdpt group.

>In fact, here is my input:

> $contrl scftyp=mcscf
>  runtyp=energy maxit=100
>  icharg=1 mult=1
>  MPLEVL=2
>  fstint=.t. gencon=.t.
>  exetyp=run
> $end

> $SYSTEM TIMLIM=60 MEMORY=204000000
>  idle=.t. mklnp=2
>  nojac=1 kdiag=0 $END
> $smp csmtx=.t. call64=1 $end
> $p2p p2p=1 dlb=1 $end
> $SCF DIRSCF=.T.  DIIS=.T. SOSCF=.F. SHIFT=.F.
> $END

> $moorth nostf=1 nozero=1 tole=0 tolz=0 $end
> $MCSCF CISTEP=GUGA fullnr=.f. ISTATE=1 acurcy=5d-7 ENGTOL=5.0d-12
>  soscf=.t. maxit=150 $END
> $TRANS dirtrf=.t. cuttrf=1d-12
>  aoints=dist altpar=.t.
>  mptran=2   mode=110 $end

> $DRT NMCC=19 NDOC=3 NALP=0 NVAL=3 FORS=.t. $end
> $GUGDIA NSTATE=3 ITERMX=100 cvgtol=1d-6 $end
> $GUGDM2 cutoff=1d-11 WSTATE(1)=1, 1, 1   $end
> $GUGEM pack2=.t. cutoff=1d-11 $end

> $XMCQDPT KSTATE(1)=1, 1, 1   MAXROW=10000
>  MXTRFR=1000 iselct(1)=-3, 100000
>  svdisk=.t.
>  INORB=0
>  edshft=0.02
>  length=30000    
> $basis GBASIS=N31 NGAUSS=6 NDFUNC=1 NPFUNC=0
>  DIFFSP=.f. DIFFS=.f. $END

> $GUESS  GUESS=moread  NORB=106 norder=0
> $END

> $DATA
> title    
> C1
> C1   6.0  -2.857095   -0.867132    0.802361
> C2   6.0  -1.477967   -0.898110    0.843796
> C3   6.0  -0.702403   -0.054721    0.046182
> C4   6.0  0.755594   -0.069250    0.031595
> C5   6.0  1.519947    0.760181    0.841547
> N6   7.0  2.836821    0.792683    0.846945
> H7   1.0  1.244644   -0.730447   -0.665136
> H8   1.0  -1.210120    0.611986   -0.633252
> H9   1.0  1.040969    1.434499    1.527664
> H10  1.0  -0.984194   -1.584551    1.508069
> H11  1.0  3.337133    1.405588    1.455677
> H12  1.0  3.383002    0.212329    0.243669
> H13  1.0  -3.445457   -1.511684    1.424304
> H14  1.0  -3.382177   -0.198160    0.147581
> $end

>--- OPTIMIZED MCSCF MO-S --- GENERATED AT 19:01:39 LT   6-JUL-2011
>.
>.
>.
>etc...

>So I am curious, does looking at the input change your answer at all?
>If not,
> Is there a difference between "constant state averaging" that you mention and the normal state averaging I am used to? If so, is there something I can read about that?      In molcas and gaussian the energies of the states are severely affected by the number of roots included in the state averaging, so I am still trying to understand what is different.
>thank you so much,
>Mark
>
>
>

This message contains the 243 kb attachment
[ different_averaging.zip ]


[ Previous ] [ Next ] [ Index ]           Mon Jul 11 '11 11:14am
[ Reply ] [ Edit ] [ Delete ]           This message read 811 times