Learn how to ask questions correctly

Alex Granovsky

gran@classic.chem.msu.su

Dear Bernhard,

HF SCF equations are non-linear equations and naturally there exist

multiple solutions to these equations. For high-spin ROHF, the situation

is even more complicated because corresponding equations are nonlinear

equations with constrains. Finally, in case of symmetric systems,

the particular implementation of SCF routine can either freeze the

overall occupation numbers of orbitals of different symmetry types

or allow them to change in the process of orbital optimization.

Kind regards,

Alex Granovsky

On Sat May 13 '17 11:38am, Bernhard Dick wrote

----------------------------------------------

>Dear friends,

>accidentally I observed that in some cases GAMESS calculates lower energies for ROHF wavefunctions than MOLPRO or ORCA. Below are the energies obtained with SCFTYP=ROHF, MULT=2, ICHARG=1 (i.e. the radical cation) of the monomer, dimer, and trimer of glycine:

>

>

> gly1(+) gly2(+) gly3(+)

>E_rohf_orca -282.53982397 -489.36557909 -696.16963524

>E_rohf_molpro -282.53982408 -489.38065114 -696.16963031

>E_rohf_gamess -282.53982408 -489.38313835 -696.22387017

>In all cases the cc-pVDZ basis was used, with D5=.T. set in $CONTRL in Firefly.

>Whereas all three programs agree for the monomer, the results differ for the dimer and the trimer.

>Since all three programs agree for the monomer, I conclude that the problem is not a difference in the basis set (e.g. spherical harmonics vs. cartesian).

>Since in all three cases the geometry is fixed to planar, the unpaired electron could be in an a' or an a'' orbital. GAMESS always puts it in a'. It seems that one can not influence this choice in ROHF, but one can set up a MCSCF run that mimicks a ROHF calculation. I.e., if I read in the ROHF orbitals and then make a CAS(1,1) calculation by setting NDOC=0 NALP=1 NVAL=0, I get exactly the same result as ROHF. If I now switch the singly occupied orbital of a'-symmetry with either an occupied or a virtual a''-orbital, the MCSCF yields energies of -696.190903226 and -695.90391231 H for the trimer. The second state is apparently an excited state, the first is lower than the ORCA and MOLPRO result.

>So I suspect that the algorithm in GAMESS is different from ORCA and MOLPRO, but even MOLPRO and ORCA dont always agree. So is ROHF defined differently by different groups? Or could it be a result of different initial guesses? In the latter case, ORCA and MOLPRO could run into local minima, and a different guess would go to the same energy as GAMESS did.

>Does anybody know about such a difference between GAMESS and other programs with respect to ROHF?

>best regards,

>Bernhard

>

Thu Jun 15 '17 4:01pm

This message read