
The efficient implementation of
the multi-reference perturbation

theories at second order

The efficient implementation of
the multi-reference perturbation

theories at second order

Alex A. Granovsky Alex A. Granovsky

Laboratory of Chemical Cybernetics, M.V. Lomonosov
Moscow State University, Moscow, Russia

September 21, 2005

Canonical single-reference MPCanonical single-reference MP
MP2:MP2:

Parameters: N, NParameters: N, Noccocc, , NNvirvir

Integral transformation Integral transformation -- NN55 stepstep
Only minor overhead due to PT power series summation itself (NOnly minor overhead due to PT power series summation itself (N4 4

step)step)

MP3 and above:MP3 and above:
Integral transformation Integral transformation -- NN55 stepstep
Intermediate quantities (amplitudes entering into numerators of Intermediate quantities (amplitudes entering into numerators of the the
individual terms of the PT series) calculations individual terms of the PT series) calculations -- NN66 and aboveand above
As in the case of MP2, PT summation itself has better scaling (eAs in the case of MP2, PT summation itself has better scaling (e.g., .g.,
NN4 4 for MP3)for MP3)

∑ Δ
><

=
ijab ijab

mp
abijE

2

2
||||

4
1

Multi-reference (MR) MBPT
theories

MultiMulti--reference (MR) MBPT reference (MR) MBPT
theoriestheories

Additional parameters:Additional parameters:
NNactact, , NNdetdet ((NNcsfcsf),), NNeffeff

More complex expressions both for energy More complex expressions both for energy
correction itself and for computational costscorrection itself and for computational costs

Third and higher orders of various formulations of the Third and higher orders of various formulations of the
multimulti--reference (MR) MBPTreference (MR) MBPT

Calculation of various intermediates is the most
computationally-demanding stage

NonNon--contracted and partially contracted MRcontracted and partially contracted MR--MBPT MBPT
theories at second ordertheories at second order

Most of the computational efforts are typically due to
summation of the individual terms of the PT series themselves,
especially for the case of large active spaces

Horrible MCQDPT2 example
(H. Nakano, 1993)

Horrible MCQDPT2 example
(H. Nakano, 1993)

Why the costs of PT summation
are important?

Why the costs of PT summation
are important?

Straightforward implementation of the Straightforward implementation of the
summation of the PT series is very summation of the PT series is very
inefficient on modern computer inefficient on modern computer
architectures because:architectures because:

At least one (or more) slow and typically not
pipelined divide operation is required to
calculate each individual term of the PT series
Summation runs over large amount of data
involving some combinations of transformed
two-electron integrals, so that it is typically not
processor cache-friendly

Our goalsOur goals

Address both these problems:Address both these problems:
1. Reformulate the rules of the summation of the PT
series to completely eliminate the slow divide
operations by

A. Removing redundant divides by replacing most of the work
to be done by the fast matrix multiplications of some
intermediate quantities
B. Removing non-redundant divides by replacing them by few
fast addition and multiplication operations

2. At the same time, develop efficient families of cache-
friendly algorithms by introducing the appropriate
intermediates and restructuring the order of loops used
for summation of the PT series

The source of dividesThe source of divides

Separate calculation of the contribution due Separate calculation of the contribution due
to each separate term of PTto each separate term of PT

Myriad of terms Myriad of terms -- myriad of dividesmyriad of divides

Normally, we do not need to know the value Normally, we do not need to know the value
of each separate term, only their sum of of each separate term, only their sum of
some kindsome kind

Way to reduce the number of divide operationsWay to reduce the number of divide operations

Redundant dividesRedundant divides
Number of different numerators is greater Number of different numerators is greater
than number of different denominatorsthan number of different denominators
A simple example:A simple example:

More realistic example (MCQDPT2):More realistic example (MCQDPT2):

∑
∑

∑ ==
i i

j
ij

ij i

ij

b

a

b
a

S

∑∑ Δ+−
><

i Bip

piiq

Bpq
pq E

uu
BEA

βεε
||

1A. Redundant divides removal 1A. Redundant divides removal

∑∑ =
Δ+−

><
i Bip

piiq

Bpq
pq E

uu
BEA

βεε
||

∑∑ =
Δ+−

><

Bip q Bip

pqpiiq

E
BEAuu

βεε
||

∑
∑

=
Δ+−

><

Bip Bip

q
pqiqpi

E

BEAuu

βεε

||

∑∑ ><=
Δ+− q

pqiqABpi
Bip Bip

ABpipi BEAuv
E

vu
|;

βεε

1B. Non-redundant divides removal1B. Non-redundant divides removal

∑ +++=
n

i n

n

i

i

b
a

b
a

b
a

b
a ...

2

2

1

1

21

1221

2

2

1

1

bb
baba

b
a

b
a +

=+
ii

iiii

i

i

i

i

bb
baba

b
a

b
a

1

11

1

1

−

−−

−

− +
=+

iiiiiiii bBBaBbAABA 11100 ;;1;0 −−− =+===
Let us define:

∑ =
n

i n

n

i

i

B
A

b
a

Then:

3 multiplications for 1 divide

2. Cache-friendly approach and
loops restructuring

2. Cache-friendly approach and
loops restructuring

∑∑ Δ+−−+
−

=
ijab BjibaB

BB E
ibjajbiajbiaCCS
β

βα εεεε
)]|()|(2)[|(

Non cache-friendly code sampleNon cache-friendly code sample

Loop over BLoop over B
Loop over iLoop over i

Loop over jLoop over j
•• Loop over aLoop over a

–– Sum over b:Sum over b:

•• End loop over aEnd loop over a
End loop over jEnd loop over j

End loop over iEnd loop over i

Accumulate SAccumulate S

End loop over BEnd loop over B

∑ Δ+−−+
−

+=
b Bjiba E

ibjajbiajbiaTT
βεεεε

)]|()|(2)[|(

Code sample analysisCode sample analysis

Why this code sample is bad? Why this code sample is bad?
There is no data reuse in the inner loopsThere is no data reuse in the inner loops

Our data: Our data:
huge number of 2huge number of 2--e integrals; e integrals;
very small number of orbital energiesvery small number of orbital energies

How to improve the codeHow to improve the code
Restructuring the code in order to allow data Restructuring the code in order to allow data
reusereuse

∑∑ Δ+−−+
−

=
ijab BjibaB

BB E
ibjajbiajbiaCCS
β

βα εεεε
)]|()|(2)[|(

Cache-friendly code versionCache-friendly code version

Loop over iLoop over i
Loop over jLoop over j

Loop over aLoop over a
•• CalculateCalculate
•• Loop over BLoop over B

–– Calculate Calculate
–– Sum over b:Sum over b:

–– AccumulateAccumulate

•• End loop over BEnd loop over B
End loop over aEnd loop over a

End loop over jEnd loop over j

End loop over iEnd loop over i

βεεε Bjia EΔ+−−=Δ

)]|()|(2)[|(ibjajbiajbiatb −=

∑ Δ+
+=

b b

btWW
ε

Main resultsMain results

Up to 50Up to 50--100 times faster MCQDPT2100 times faster MCQDPT2

	The efficient implementation of the multi-reference perturbation theories at second order
	Canonical single-reference MP
	Multi-reference (MR) MBPT theories
	Horrible MCQDPT2 example�(H. Nakano, 1993)
	Why the costs of PT summation are important?
	Our goals
	The source of divides
	Redundant divides
	1A. Redundant divides removal
	1B. Non-redundant divides removal
	2. Cache-friendly approach and loops restructuring
	Non cache-friendly code sample
	Code sample analysis
	Cache-friendly code version
	Main results

