Large-scale QC modeling using PC GAMESS package.

Alex A. Granovsky

Laboratory of Chemical Cybernetics, M.V. Lomonosov Moscow State University, Moscow, Russia June 30, 2006

Outline

Introduction to PC GAMESS
 Modeling of large systems:

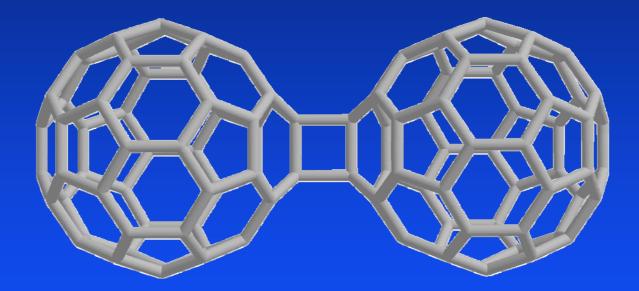
 High-level methods
 Linear scaling methods
 QM/MM-based approaches

The PC GAMESS project

- Intel architecture specific high-performance parallel freely-available QC package
- Is being developed in the Laboratory of Chemical Cybernetics at MSU since 1993
- Used by more than 2500 academic/industry research groups all around the world
- Supports Windows and Linux based SMP systems, clusters, and their combinations
- New state-of-the-art parallel algorithms for many QC calculation methods, scalable up to hundreds of nodes.

PC GAMESS vs. GAMESS US:

- Strongly modified to achieve the maximum possible performance on Intel-based platforms;
- Functionally extended to provide QC methods which are not currently present in the regular GAMESS version;
- Designed to deal with large molecular systems efficiently;
- Runs much faster and requires less resources

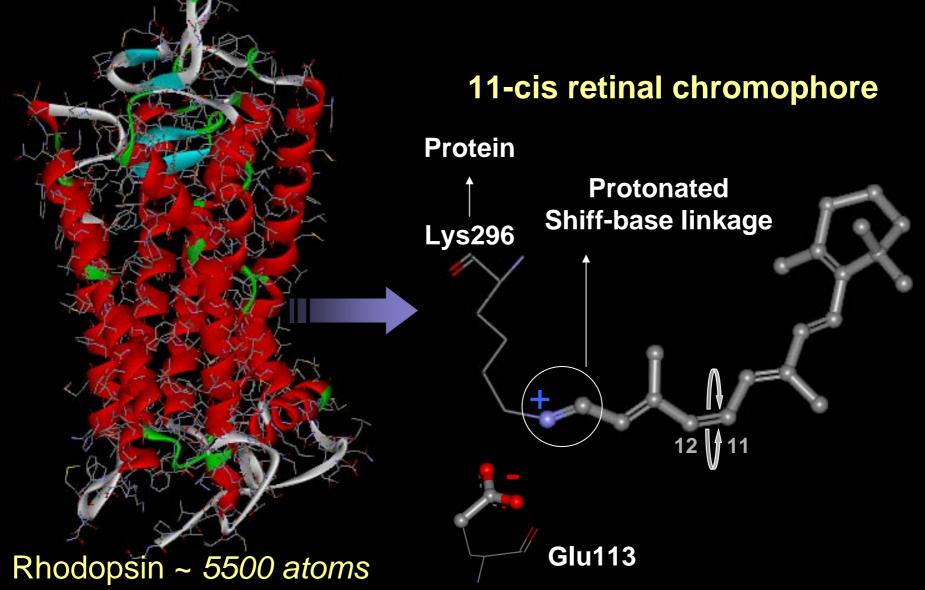

Modeling of large systems, highlevel methods

High-level methods, current status

 Routinely applicable to modeling of ground and excited states of medium-size systems:
 State-of-the-art parallel algorithms for MP2-MP4, MCSCF, and MCQDPT2
 Allows to model medium size systems (up to 1000-4000 basis functions) with high accuracy and reasonable calculation time

High-level methods, examples

Medium size systems: Fullerene C_{60} and its dimer C_{120} , MP2 calculations



Largest MP2 calculation attempted so far

System	C ₁₂₀		
Basis	cc-pVTZ-f		
Group	D_{2h}		
N	3000		
с	120		
n	240		
N _{nodes}	18		
Dynamic load balancing	off	on	on
Real time data packing	off	on	on
Asynchronous I/O	off	off	on
Total FP operations count	$3.24 \cdot 10^{15}$	$3.32 \cdot 10^{15}$	$3.32 \cdot 10^{15}$
Distributed data size	2.0 TB	2.0 TB	2.0 TB
CPU time on master node, sec	83029	89301	95617
Wall clock time, sec.	150880	110826	95130
CPU usage, %	55	80.5	100.5
Node performance, MFlops/s	1330	1935	2320
Performance, % of peak	27.7	40.3	48.3
Cluster performance, GFlops/s	23.9	34.8	41.7

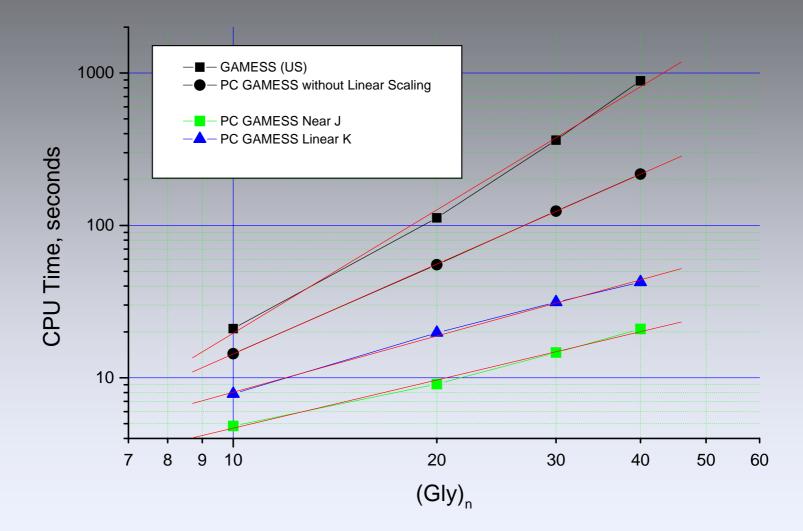
Pentium 4C 2.4 GHz / 1024MB / 120GB / Gigabit Ethernet

Medium size systems: structure and electronic spectra of retinal molecule in rhodopsin photoreceptor protein (visual pigment)

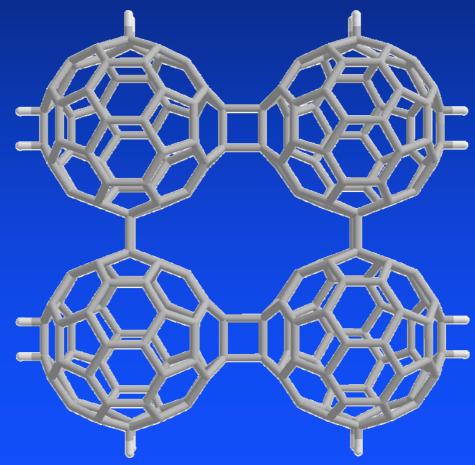
Electronic spectra of retinal molecule in rhodopsin photoreceptor protein <u>Retinal molecule in protein (rhodopsin)</u> environment - photosensitive receptor + 77 atoms (H, C, N, O), 258 electrons
 ★ approx. 5500 atoms in the protein ◆ four-state QM/MM MCQDPT2 calculation for high-quality description of the excited states and electronic transition moments Number of basis functions (N) 715 + Number of FP operations ~ $1.5 \cdot 10^{15}$ Less than 2 days on the single dual-Nocona workstation (this is one of the largest calculation of that kind ever attempted so far).

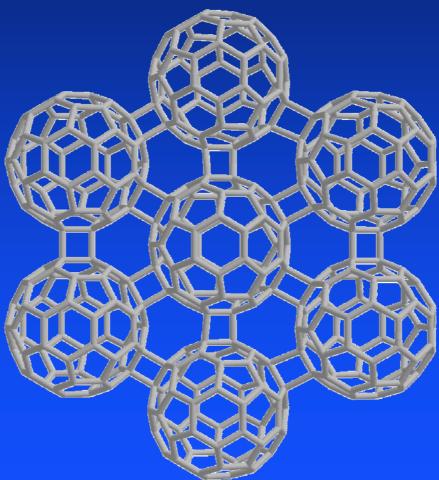
High-level methods, future plans
No linear scaling approaches at present but will be implemented in the future:
Local correlation methods with linear scaling
Resolution of Identity (RI)-based methods.

Modeling of large systems linear scaling methods for HF, DFT, CIS, TDHF, and TDDFT


Linear scaling methods, current status

- Fast linear scaling Coulomb (J matrix) assembly via QFMM and near-field J engine
- State-of-the-art grid-based Exchange-Correlation integration for linear scaling DFT and TDDFT
- State-of-the-art linear scaling HF exchange (K matrix) assembly for HF, hybrid DFT, CIS, TDHF, and TDDFT


Linear scaling methods, examples

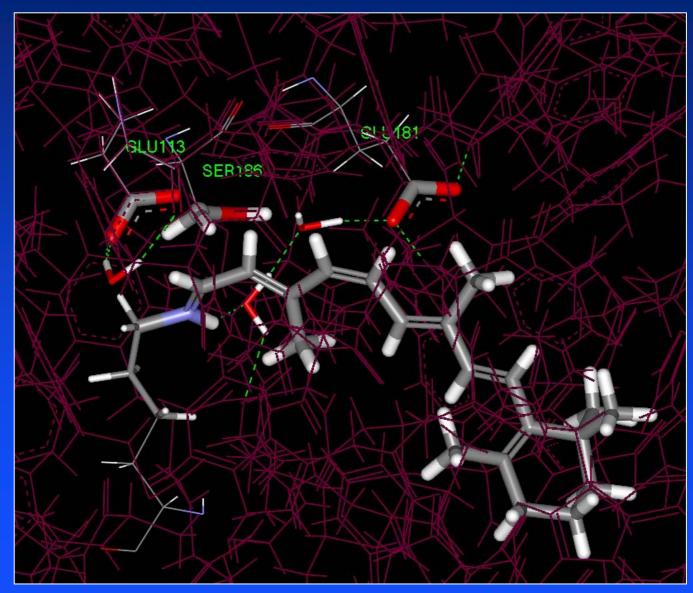

Scaling example, Glycine oligomers (running on 18 nodes)

Fullerene (C_{60}) 2D polymer (tetragonal phase) - modeled by PC GAMESS

Fullerene (C_{60}) 2D polymer (hexagonal phase) - modeled by PC GAMESS

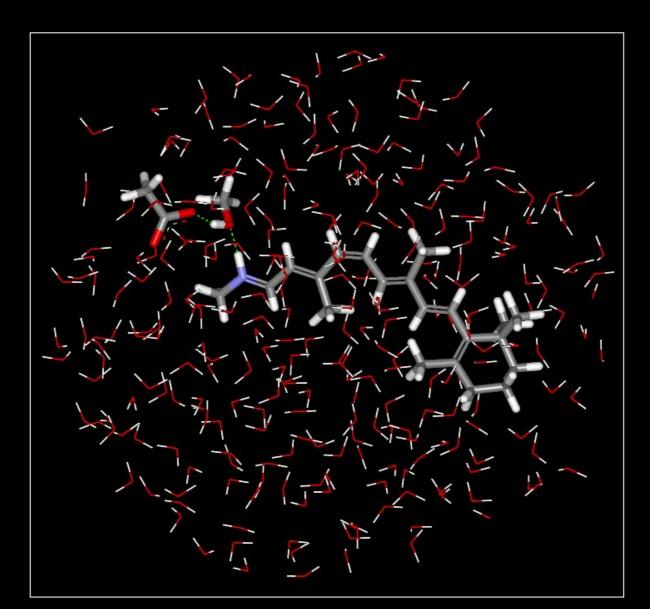
Linear scaling methods, future plans

- Linear scaling QFMM energy gradients for HF, DFT, and TDDFT
- RI-based methods:
 - RI-J based code for pure DFT functionals
 - ♦ RI-K based code for hybrid DFT


 Multipole Accelerated RI (MARI) energies and gradients for super-fast linear scaling DFT and TDDFT

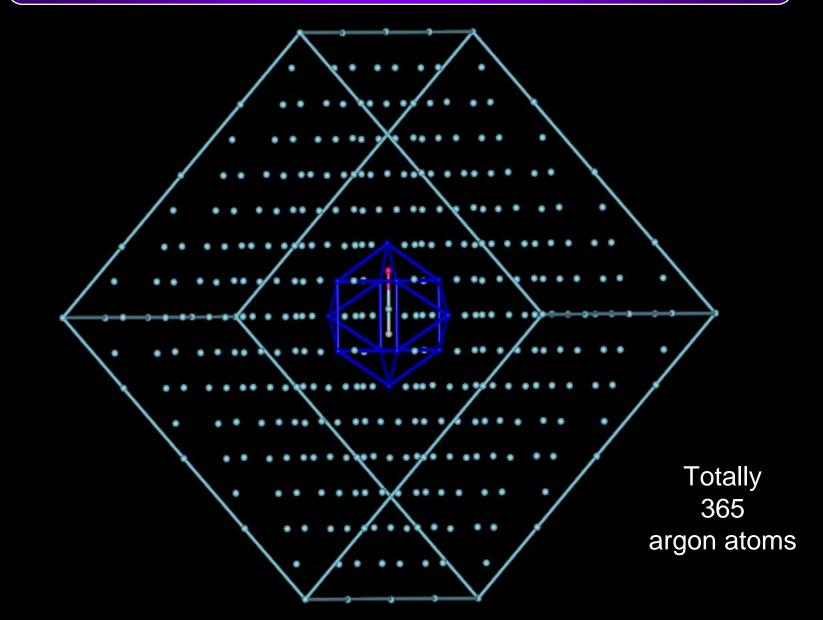
GW-based methods for excited states and zone theory Modeling of large systems -QM/MM-based methods

QM/MM methods, current status Several QM/MM approaches are already implemented in the PC GAMESS: Mechanical embedding Electronic embedding Different types of QM/MM: Classical QM/MM (Jim Kress) Several empirical force fields, including UFF QM/DIM (Diatomics In Molecules) (A. Bochenkova) Nonempirical many-body force fields ♦ QM/EFP (GAMESS US) + Semiempirical and nonempirical corrections to H₁


QM/MM methods, examples

Equilibrium structure of Retinal molecule in Rhodopsin protein (5500 atoms)

QM/MM methods - modeling effects of the environment


Equilibrium geometry of the retinal molecule in water solution - PC GAMESS QM/EFP results

F

Totally 275 water molecules

Equilibrium geometry of HArF molecule in argon matrix - PC GAMESS QM/DIM results

QM/MM methods, future plans

Implement polarizable force fields

The PC GAMESS on the Web:

http://classic.chem.msu.su/gran/gamess/index.html