Searching efficient inequalities for 2-e AO integrals screening

Alexander A. Granovsky* Vladimir I. Pupyshev⁺

*Laboratory of Chemical Cybernetics +Laboratory of Molecular Structure and Quantum Mechanics M.V. Lomonosov Moscow State University, Moscow, Russia November 15, 2006

Notations

p, q, r, s - atomic orbitals
(pq|rs) - 2-e integral in AO basis
Chemical notation: p(1) q(1), r(2), s(2)

Simple known inequalities

Schwarz inequalities:

- Most powerful and most useful:
- ◆ $|(pq|rs)| \le |(pq|pq)(rs|rs)|^{1/2}$ (1)
 - Simple sequences (weaker inequalities):
 - $|(pq|rs)| \le |(pq|pq)(rs|rs)|^{1/2} \le |(pp|qq)(rs|rs)|^{1/2}$
 - $|(pq|rs)| \le |(pq|pq)(rs|rs)|^{1/2} \le |(pq|pq)(rr|ss)|^{1/2}$
 - $|(pq|rs)| \le |(pq|pq)(rs|rs)|^{1/2} \le |(pp|qq)(rr|ss)|^{1/2}$
 - $|(pq|rs)| \le |(pp|pp)(qq|qq)(rr|rr)(ss|ss)|^{1/4}$
- Less useful but different:
- > |(pq|rs)| ≤ |(pp|rr)(qq|ss)|^{1/2} (2)
 > |(pq|rs)| ≤ |(pp|ss)(qq|rr)|^{1/2} (3)

Much less trivial

Hardy-Littlewood-Sobolev inequality: $\diamond \forall p,r>1, 0 < \lambda < n, \frac{1}{p} + \frac{\lambda}{n} + \frac{1}{r} = 2, \forall f \in L_p(\mathbb{R}^n), h \in L_r(\mathbb{R}^n)$ $\left| \int_{D^{n}} \int \frac{f(x)h(y)}{|x-y|^{\lambda}} d^{n}x d^{n}y \right| \le C(n,\lambda,p) ||f||_{p} ||h||_{r}$ $\bullet \text{ where } \quad \|f\|_p = \left(\int_{\mathbb{R}^n} |f(x)|^p d^n x\right)^{1/p}$ $C(n,\lambda,p) \leq \frac{3}{3-\lambda} \left[\frac{4\pi}{3} \right]^{\lambda/3} \frac{1}{pr} \left[\left(\frac{\lambda/3}{1-1/p} \right)^{\lambda/3} + \left(\frac{\lambda/3}{1-1/r} \right)^{\lambda/3} \right]$ $\bullet p = r = 2n/(2n-\lambda): \quad C(n,\lambda,p) = \pi^{\lambda/2} \frac{\Gamma(n/2-\lambda/2)}{\Gamma(n-\lambda/2)} \left(\frac{\Gamma(n/2)}{\Gamma(n)}\right)^{\lambda/n-1}$

Simple sequences, symmetric case

For n = 3, $\lambda = 1$, f, $h \in L_{6/5}(\mathbb{R}^3)$:

$$\left| \int_{R^{3}R^{3}} \frac{f(x)h(y)}{|x-y|} d^{3}x d^{3}y \right| \leq \frac{8}{3} \left(\frac{2}{\pi}\right)^{1/3} ||f||_{6/5} ||h||_{6/5}$$

$$\left| \left(pq \mid rs \right) \right| = \left| \iint_{R^{3}R^{3}} \frac{p(x)q(x)r(y)s(y)}{\mid x - y \mid} d^{3}x \, d^{3}y \right| \le \frac{8}{3} \left(\frac{2}{\pi}\right)^{1/3} \parallel pq \parallel_{6/5} \parallel rs \parallel_{6/5} (4)$$

Great disappointment

Inequality (4) is weaker than much simpler Schwarz inequality (1):

■ <u>Statement (1):</u>

■ Let $|(pq|rs)| \le |G(p,q)G(r,s)|^{1/2}$ ■ Then: $|(pq|rs)| \le |(pq|pq)(rs|rs)|^{1/2} \le |(G(p,q)G(p,q)|^{1/2} |G(r,s)G(r,s)|^{1/2}|^{1/2} =$

 $= |G(p,q)G(r,s)|^{1/2}$

Sequence: the only way to improve (1) is to use non-symmetric Sobolev inequalities

Fully non-symmetric case

p = 1, r = n/(n-λ) = 3/2: C(n, λ, p = 1) ≤ ∞
 ◆ Finite C: does it exist at all?
 Our numerical experiments show that at least for GTOs:

 $C(3,1,1) \equiv C(3,1,6/5) = \frac{8}{3} \left(\frac{2}{\pi}\right)^{1/3}$ Promising result!

Applying this to estimate (pq|rs)

$$\left| \left(pq \mid rs \right) \right| = \left| \int_{\mathbb{R}^{3} \mathbb{R}^{3}} \frac{p(x)q(x)r(y)s(y)}{\mid x - y \mid} d^{3}x \, d^{3}y \right| \le \frac{8}{3} \left(\frac{2}{\pi} \right)^{1/3} \parallel pq \parallel_{1} \parallel rs \parallel_{3/2} (5)$$

$$\left| \left(pq \mid rs \right) \right| = \left| \int_{R^{3}R^{3}} \frac{p(x)q(x)r(y)s(y)}{\mid x - y \mid} d^{3}x \, d^{3}y \right| \le \frac{8}{3} \left(\frac{2}{\pi} \right)^{1/3} \mid \mid pq \mid \mid_{3/2} \mid \mid rs \mid \mid_{1} (6)$$

Combining them together

|(pq|rs)| ≤ G1(p,q)G2(r,s) (5)
 |(pq|rs)| ≤ G2(p,q)G1(r,s) (6)

 ((pq|rs))| ≤ min(G1(p,q)G2(r,s),G2(p,q)G1(r,s)) (7)

 The statement (1) above is no longer applicable!

Results of numerical experiments Inequality (7) is not identical to (1) ■ Inequality (7) seems to be slightly more accurate in most cases \blacksquare The best way is to use both (1) and (7) at the same time Considerable CPU time required for evaluation of non-trivial integrals entering inequality (7) makes its practical applications senseless! The only acceptable case: fully uncontracted basis sets

Conclusions: what are the inequalities we actually need?

- Inequality (1) does not include 1/r dependence
- Inequalities (2) and (3) include 1/r dependence but do not decay exponentially
- We need the set of inequalities combining properties of both (1) and (2)-(3)!
- Our hope: strengthened Schwarz inequality

Thank you for your attention!