Exploiting non-Abelian symmetry in AO-driven CIS, RPA, and TDDFT calculations

Alex A. Granovsky

Laboratory of Chemical Cybernetics, M.V. Lomonosov Moscow State University, Moscow, Russia February 15, 2006 JOURNAL OF CHEMICAL PHYSICS

An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules

R. Eric Stratmann and Gustavo E. Scuseria^{a)} Department of Chemistry, Rice Quantum Institute, and Center for Nanoscale Science and Technology, Rice University, Houston, Texas 77005-1892

Michael J. Frisch Lorentzian, Inc., 140 Washington Avenue, North Haven, Connecticut 06473

(Received 27 April 1998; accepted 12 August 1998)

JOURNAL OF CHEMICAL PHYSICS

VOLUME 117, NUMBER 16

VOLUME 109, NUMBER 19

22 OCTOBER 2002

Adiabatic time-dependent density functional methods for excited state properties

Filipp Furche^{a)} and Reinhart Ahlrichs Institut für Physikalische Chemie, Universität Karlsruhe, Kaiserstraße 12, 76128 Karlsruhe, Germany

(Received 22 May 2002; accepted 30 July 2002)

RPA & TDDFT master equation

The basic statement is that excitation energies are the stationary points of the functional

$$G[X,Y,\Omega] = \langle X,Y | \Lambda | X,Y \rangle - \Omega(\langle X,Y | \Delta | X,Y \rangle - 1). \quad (1)$$

 $\boldsymbol{\Omega}$ is a real Lagrange multiplier, and the vectors

$$|X,Y\rangle = \begin{pmatrix} X \\ Y \end{pmatrix} \tag{2}$$

are defined on the Hilbert space $L = L_{virt} \times L_{occ} \oplus L_{occ} \times L_{virt}$, where L_{occ} and L_{virt} denote the Hilbert spaces of occupied (occ) and virtual (virt) molecular orbitals (MOs), respectively. The MOs $\varphi_{p\sigma}(\mathbf{r})$ are solutions of the static KS equations with eigenvalues $\epsilon_{p\sigma}$. As usual, indices i,j,... label occupied, a,b,... virtual, and p,q,... general MOs. We assume the MOs to be real, which is always possible in the absence of magnetic fields.

RPA & TDDFT master equation

The "superoperators" Λ and Δ

read

$$\Lambda = \begin{pmatrix} A & B \\ B & A \end{pmatrix}, \quad \Delta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
(3)

A and B are sometimes called orbital rotation Hessians

A and B matrices

$$(A+B)_{ia\sigma jb\sigma'} = (\epsilon_{a\sigma} - \epsilon_{i\sigma}) \,\delta_{ij} \delta_{ab} \delta_{\sigma\sigma'} + 2(ia\sigma|jb\sigma') + 2 f_{ia\sigma jb\sigma'}^{\text{xc}} - c_{x} \delta_{\sigma\sigma'} [(ja\sigma|ib\sigma) + (ab\sigma|ij\sigma)], (A-B)_{ia\sigma jb\sigma'} = (\epsilon_{a\sigma} - \epsilon_{i\sigma}) \,\delta_{ij} \delta_{ab} \delta_{\sigma\sigma'} + c_{x} \delta_{\sigma\sigma'} [(ja\sigma|ib\sigma) - (ab\sigma|ij\sigma)].$$

 $(pq\sigma|rs\sigma')$ is a two-electron repulsion integral in Mulliken notation, and $f_{pq\sigma rs\sigma'}^{xc}$ represents a matrix element of the exchange-correlation kernel in the adiabatic approximation,

$$f_{\sigma\sigma'}^{\rm xc}(\mathbf{r},\mathbf{r}') = \frac{\delta^2 E^{\rm xc}}{\delta\rho_{\sigma}(\mathbf{r})\,\delta\rho_{\sigma'}(\mathbf{r}')}.$$

RPA & TDDFT master equation

Applying the variational principle, we obtain the stationarity conditions for G,

$$\frac{\delta G}{\delta \langle X, Y |} = (\Lambda - \Omega \Delta) | X, Y \rangle = 0,$$

$$\frac{\partial G}{\partial \Omega} = \langle X, Y | \Delta | X, Y \rangle - 1 = 0.$$

The CIS or Tamm–Dancoff approximation (TDA) is easily derived by constraining Y identically to zero in the variation of G.

How to solve?

 Davidson diagonalization vectors X RPA & TDDFT Davidson-like diagonalization methods ✦ Require construction of (A+B)•X, (A+B)•Y, (A-B)·X, (A-B)·Y products for trial vectors X and Y For our purposes, it is sufficient to consider in details CIS only.

AO-driven CIS

- Let us consider RHF-based CIS for simplicity
- Let us transform basis from determinants to SAPS (CSF) to solve separate problems for singlet states (and triplet states) and to avoid spin-orbitals.

$\blacksquare \mathbf{A} \cdot \mathbf{X} = \Sigma_{jb} \mathbf{A}_{ia,jb} \cdot \mathbf{X}_{jb}$

- $\bullet \mathbf{A_{ia,jb}} = (\varepsilon_a \varepsilon_i) \delta_{ij} \delta_{ab} + \dots$
 - The most efficient way to evaluate this part of the matrixvector product is to use MO basis.
- $A_{ia,jb} = ... + (ia|jb) + exchange-related terms$
 - The most efficient way to calculate these parts of matrix-vector product (most time-consuming step) is to use AO basis:
 - + $\Sigma_{jb}(ia|jb)\cdot X_{jb} = \Sigma_{jb} \Sigma_{pqrs} C_{ip} C_{aq} C_{jr} C_{bs} (pq|rs)\cdot X_{jb} =$ $\Sigma_{pq} C_{ip} C_{aq} \Sigma_{rs} (pq|rs) \cdot (\Sigma_{jb} C_{jr} C_{bs} X_{jb})$

AO-driven CIS benefits

Does not require integral transformation

 applicable to very large systems
 simplifies use of molecular symmetry

 Is based on the construction of Fock-like matrices

 All known approaches used to solve large-scale SCF problems can be also used in the case of CIS

- Linear scaling
 - QFMM
 - Linear exchange

Main CIS and SCF differences

CIS operates with non-symmetrical (square) density-like and Fock-like matrices

CIS results in non totally-symmetric density and Fock-like matrices. The symmetry is defined by the symmetry of the target CIS state Reminiscence. Use of molecular point group symmetry in SCF methods

■ At least two different ways:

Use of symmetrized AO basis functions and 2-e integrals

Use of petite AO integral list:

- Construction of the skeleton Fock matrix
- Projection/symmetrization to the totally symmetric irreducible representation at the end

Symmetrization of Operator Matrix Elements

PETER R. TAYLOR

CSIRO, Division of Chemical Physics, P.O. Box 160, Clayton, Victoria, 3168, Australia

Recently, Dupuis and King [1], following earlier work by Dacre [2], have presented a method for constructing the matrix representation, over an AO basis, of a toally symmetric operator \hat{O} , using only symmetry-distinct AO integrals. Such a totally symmetric operator \hat{O} satisfies the equation

$$\mathbf{R}^{\dagger}\mathbf{O}\mathbf{R}=\mathbf{O},\tag{1}$$

where **O** is the matrix of \hat{O} in the AO basis, and **R** is the matrix representation of the effect of \hat{R} , an operator from the molecular point group \mathcal{G} , on the AO basis χ :

$$\hat{\mathbf{x}} = \mathbf{x} \mathbf{R}. \tag{2}$$

R is a nonunitary reducible representation matrix. Of course, in general, many operators are not totally symmetric.

Skeleton matrix symmetrization

Any one-electron operator O will transform as a particular row (say, the Kth) of a particular representation (say Γ), that is,

$$\hat{O}_{K}^{\Gamma} = \sum_{\Lambda} \mathscr{D}_{K\Lambda}^{\Gamma}(R)^{*} \hat{R}^{-1} \hat{O}_{\Lambda}^{\Gamma} \hat{R}.$$
(5)

In matrix form we then have

$$\mathbf{O}(\Gamma, K) = \sum_{\Lambda} \mathscr{D}_{K\Lambda}^{\Gamma}(R)^* \mathbf{R}^{\dagger} \mathbf{O}(\Gamma, \Lambda) \mathbf{R}.$$
 (6)

Here Λ runs over all partners in representation Γ and $\mathcal{D}^{\Gamma}(R)$ is a representation matrix. It should be noted that Γ is *not* required to be irreducible but can always be taken as unitary.

We define symmetrization of an operator matrix $O(\Gamma, K)$ by

$$\mathbf{O}(\Gamma, K)_{\text{sym}} = (2g)^{-1} \sum_{R} \sum_{\Lambda} \mathscr{D}_{K\Lambda}^{\Gamma}(R)^* R^{\dagger} [\mathbf{O}(\Gamma, \Lambda) + p\mathbf{O}(\Gamma, \Lambda)^{\dagger}] \mathbf{R}, \qquad (11)$$

where p = +1 if the operator is Hermitian and p = -1 if it is anti-Hermitian. We wish to establish the following

Theorem:

$$\mathbf{O}(\Gamma, K) = \bar{\mathbf{O}}(\Gamma, K)_{\text{sym}}$$

= $(2g)^{-1} \sum_{R} \sum_{\Lambda} \mathscr{D}_{K\Lambda}^{\Gamma}(R)^* \mathbf{R}^{\dagger} \{ \bar{\mathbf{O}}(\Gamma, \Lambda) + p \bar{\mathbf{O}}(\Gamma, \Lambda)^{\dagger} \} \mathbf{R}.$ (12)

Terminology

Projection and Shift Operators

An operator

$$\mathscr{P}^{\alpha}_{ii} = g^{-1} n_{\alpha} \sum_{G} D^{\alpha}_{ii}(G)^* G$$

is a *projection operator* or *projector*. It is Hermitian and idempotent. For $i \neq j$ we have a *shift operator*

$$\mathscr{P}^{\alpha}_{ji} = g^{-1} n_{\alpha} \sum_{G} D^{\alpha}_{ji}(G)^* G.$$

• For a projection operator

$$\mathscr{P}^{\alpha}_{ii}f = f^{\alpha}_i \text{ (or 0)},$$

whereas

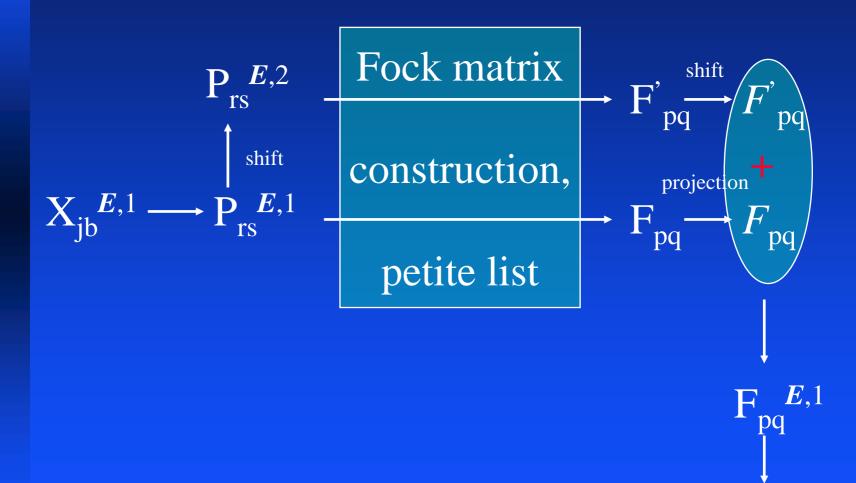
$$\mathscr{P}^{\alpha}_{ji}f^{\alpha}_i = f^{\alpha}_j.$$

That is, we obtain *partner functions* of f_i^{α} .

Gathering things together

- Now we have all the tools to construct algorithm for (any symmetry) Fock-like matrix assembly using petite integral list
 Let us consider some 2-d irrep. *E* without the loss of generality.
- We are interested in getting CIS states transforming, say, as the first row of *E* only, as their counterparts can be constructed (if needed at all) after diagonalization of the CIS Hamiltonian using shift operators.

Strategy



 $\mathbf{A} \cdot \mathbf{X}^{E,1}$

The only nontrivial (?) point

Shift and projection operators for densitylike matrices are not the same as for Focklike matrices!

Fock-like matrices:

→ R(g)

Density-like matrices:

 $\mathbf{R}(g)$ should be replaced by $\mathbf{R}^+(g^{-1})$

Thank you for your attention!