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The distinctive desirable features, both mathematically and physically meaningful, for all partially
contracted multi-state multi-reference perturbation theories (MS-MR-PT) are explicitly formulated.
The original approach to MS-MR-PT theory, called extended multi-configuration quasi-degenerate
perturbation theory (XMCQDPT), having most, if not all, of the desirable properties is introduced.
The new method is applied at the second order of perturbation theory (XMCQDPT2) to the 11A′

– 21A′ conical intersection in allene molecule, the avoided crossing in LiF molecule, and the 11A1

to 21A1 electronic transition in cis-1,3-butadiene. The new theory has several advantages compared
to those of well-established approaches, such as second order multi-configuration quasi-degenerate
perturbation theory and multi-state-second order complete active space perturbation theory. The anal-
ysis of the prevalent approaches to the MS-MR-PT theory performed within the framework of the
XMCQDPT theory unveils the origin of their common inherent problems. We describe the efficient
implementation strategy that makes XMCQDPT2 an especially useful general-purpose tool in the
high-level modeling of small to large molecular systems. © 2011 American Institute of Physics.
[doi:10.1063/1.3596699]

I. INTRODUCTION

Perturbation Theory (PT) has always been one of the
most successful yet relatively inexpensive tools of quantum
chemistry. In particular, the variant of PT suggested by Møller
and Plesset1 (MPn) turned out to be a very powerful tool al-
ready at the second order (MP2).2, 3 However, it is well known
that simple single-reference constructs, which the MPn is,
work very well for electronic states dominated by a single
Slater determinant, but fail severely for multi-configuration
wavefunctions. Several successful generalizations of MP or
MP-like approaches to the case of multi-configuration ref-
erence states (MR-PT) have been suggested during the last
two decades. Among them are the MR-MP2 approach by
Hirao,4–7 second order complete active space perturbation
theory (CASPT2) approach by Andersson, Malmqvist, and
Roos,8–11 and second order n-electron valence state perturba-
tion theory (NEVPT2) by Angeli et al.,12–15 the latter being a
relatively recent development in this field. Overview of sev-
eral other approaches to MR-PT can be found in Ref. 16.

Nevertheless, the single-state approaches to MR-PT as-
sume the “diagonalize then perturb” philosophy and require
a zero-order wavefunction that is already well described by
complete active space self-consistent field (CASSCF) or a
similar procedure. In practice, this is more the exception
than the rule; so the possibility for several reference states
to mix within the MR-PT treatment is very important. The
natural way to allow this mixing is to use the multi-state
(MS) formulations of MR-PT approaches leading to various
MS-MR-PT theories. Specifically, the MS formulation of
MR-MP2 has long been known as the multi-configuration
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quasi-degenerate perturbation theory (MCQDPT) approach
developed by Nakano.17–23 The MS formulation of CASPT2
known as MS-CASPT2 was originally suggested by Finley
et al.,24 while the MS version of NEVPT2 known as QD-
NEVPT2 was recently developed by Angeli et al.25 All of
them are of the “diagonalize then perturb then diagonalize”
type. In particular, this means that instead of perturbing the
entire CASCI Hamiltonian, only several selected CI roots are
perturbed and mixed, i.e., these methods employ the so-called
partial contraction in the space of CI expansion coefficients.
These approaches are more or less directly related to the for-
mal theory of the effective Hamiltonians and quasi-degenerate
perturbation theories (QDPT) that have been well established
for a long time.26–37 Essentially, all three theories define ap-
proximations to the exact effective Hamiltonian acting within
a model space,33, 37 i.e., a subspace spanned by selected CI
roots. Energies of perturbed states are then obtained as eigen-
values of effective Hamiltonian while projections of perturbed
states onto zero-order states are defined by the corresponding
eigenvectors. It is worth to mention the SS-MRPT approach
by Mukherjee and co-workers as an interesting state-specific
alternative to described traditional multi-state scheme yet al-
lowing relaxation of zero-order wavefunction within a model
space.38–41

The most important distinctions in formulation of var-
ious MS-MR-PT schemes are the selection of zero-order
Hamiltonian and of so called “perturbers,” i.e., zero-order
states allowed to interact with zero-order wavefunctions in PT
treatment. In the case of MCQDPT2, “perturbers” are simply
all possible individual CSFs or Slater determinants not be-
longing to CASCI space and obtained applying single and
double excitations individually to every configuration state
function (CSF) or determinant entering reference states. In
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contrary, both MS-CASPT2 and QD-NEVPT2 are formulated
using state-specific and more sophisticated “perturbers” de-
fined as specific linear combinations of some selected classes
of CSFs or determinants. Depending on the particular scheme
in use, the latter approach is known as either internal8, 9, 42 or
external43, 44 contraction.

Both MR-MP2 and CASPT2 approaches apply one-
particle Fock-like zero-order Hamiltonian. In contract,
NEVPT2 scheme adopts partially bi-electronic zero-order
Hamiltonian initially suggested by Dyall.45 As will be dis-
cussed later, the situation is more complicated for the
MS-MR-PT counterparts of all three approaches.

The goal of the present paper is the further development
in the field of MS-MR-PT theories. Namely, we present a new
approach to MS-MR-PT and analyze some of the existing ap-
proaches within its framework.

The rest of the paper is organized as follows. We start
with formulation of some important properties that seem
to be desirable for any partially contracted MS-MR-PT-
based approach. Then we present a brief critical overview of
MCQDPT and formulate the new approach to MS-MR-PT,
which we call extended multi-configuration quasi-degenerate
perturbation theory (XMCQDPT). We demonstrate that
XMCQDPT has the desired properties for an improved, accu-
rate and effective MS-MR-PT theory. We also present the ef-
ficient formulation of the working equations of XMCQDPT2
(XMCQDPT at second order). Next, we apply XMCQDPT2,
as well as MCQDPT2 and different formulations of MS-
CASPT2, to model problems including a conical intersection
in the allene molecule, an avoided crossing in LiF molecule,
and a characterization of the 11A1 to 21A1 electronic transi-
tion in cis-1,3-butadiene. We demonstrate the superiority of
the XMCQDPT2 methodology and the importance of the re-
quirements we imposed on XMCQDPT. Discussion and final
remarks conclude the paper.

II. PRELIMINARY CONSIDERATIONS

Let us formulate important properties that are desirable
for any partially contracted MS-MR-PT-based approach and
which we tried to achieve developing XMCQDPT. These
properties can be considered as an attempt to bring various
formulations of MS-MR-PT into better accordance with the
formal theory of Effective Hamiltonians.

In practical applications, various MR-PT and especially
MS-MR-PT theories can be plagued by the so-called “intruder
state problem,”46, 47 causing appearance of very small energy
denominators in PT series and leading to spurious results of
the entire PT calculation. The persistence of this problem
varies with particular theory. For instance, it has been demon-
strated that NEVPT2 is inherently less prone to this problem
as compared with MR-MP2 and CASPT2.48, 49 However, the
problem still probably persists in the QD version of NEVPT2
approach on the par with other MS-MR-PT schemes. For sim-
plicity, we assume below that intruder states are either irrel-
evant, or that they were successfully eliminated using, for
instance, intruder state avoidance (ISA) (Ref. 50) or similar
techniques.

First, we assume that the effective Hamiltonian should be
explicitly dependent on the dimension of the model space in
any nontrivial order of PT. Evidently, this dependence should
not be just the trivial one caused by the simple extension of
the model space. It also should not be related only to the vari-
ations of orbital energies, orbitals, or both, caused by the aver-
aging of one-particle density matrices over varying number of
CI roots, and hence should not be related only to the implicit
dependence of the effective Fock operator(s) and zero-order
Hamiltonian on the dimension of the model space. Indeed,
the exact effective Hamiltonian fits the explicit dependence
of the true effective Hamiltonians on the model space ex-
tension. Hence, approximations to the exact effective Hamil-
tonian should approximate this explicit dependence on the
model space size as well. One should realize that, in general,
the restriction of an effective Hamiltonian to a subspace of
the model space is not a new effective Hamiltonian associated
with this smaller subspace. A proof of this statement based on
the definition of effective Hamiltonians and variational princi-
ple can be found in Appendix SI of supplementary material.51

Second, the very important property is the convergence of
energies as well as other observable properties with respect
to model space extension at any fixed order of PT provided
that the active space used in underlying MCSCF calculations
is well-balanced and accurately designed so that there are no
spurious zero-order states (i.e., solutions of non-linear MC-
SCF equations which do not describe real excited states52–54).
This property is evidently mandatory for the low-lying elec-
tronic states that are typically of interest and is desirable for
other states as well.

The third property is that the effective Hamiltonian
should be a function of the subspace spanned by the selected
CI vectors, rather than a function of any particular choice of
basis in this subspace. In particular, this means that the effec-
tive Hamiltonian should be the same regardless of whether
the initial CI vectors, or any alternative vectors obtained
as their arbitrary orthogonal transformation, were used for
MS-MR-PT computations. Indeed, as many-body perturba-
tion theory (MBPT) is a purely algebraic approach, it has
well-defined algebraic invariance properties. Hence, it is nat-
ural to impose the same restriction on the MS-MR-PT. The
very important consequence of this property is that the cor-
rectly formulated partially contracted theory should be ex-
actly equivalent to the corresponding uncontracted theory
provided that the dimension of the model space is equal to the
dimension of the CI space (i.e., the overall number of CSFs or
determinants spanning the CI space).

Finally, the most important and physically evident
requirement is that the computed energies must be uniquely
defined, continuous and smooth functions of the molecular
geometry and any other external parameters, with possible
exceptions at the manifolds of their accidental degeneracy
such as conical intersections.

In modeling of many-electron molecular systems, the
correct dependence of computed energies and other proper-
ties on the number of electrons in the correlation treatment
plays crucial role. This requirement is related to such fea-
tures of the underlying theories as exact or approximate size-
consistency55 and separability.56–59 It is often believed that
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the exact size-consistency is very desirable for any high-level
computational approach designed to describe large systems.
However, we do not consider small deviations from the exact
size-consistency as a serious deficiency of MS-MR-PT theo-
ries, provided that these deviations are more or less constant
regardless of the model space dimension and do not cause any
significant unphysical effects even for large systems. It seems
that the exact or approximate core-separability59 is the most
important requirement, while small deviations from the strict
separability are quite acceptable. In particular, the possibility
of applying the correctly formulated MS-MR-PT-based meth-
ods to the calculation of vertical electronic excitation energies
should not be affected by these deviations.

III. OVERVIEW OF THE MCQDPT APPROACH

Because XMCQDPT is closely related to the MCQDPT
(Multi-Configuration Quasi-Degenerate Perturbation Theory)
approach suggested by Nakano17 as a multi-state generaliza-
tion of the MR-MP2 theory by Hirao,4 it is helpful to review
the basics of MCQDPT. Additional details can be found in the
original papers on this theory.17–23

MCQDPT is the multi-state multi-reference Van Vleck-
type perturbation theory of partially contracted type that
employs isometric (i.e., unitary through any PT order)
normalization.60–62 More precisely, a model space is spanned
by several CI vectors (partial contraction) that are typically
obtained as a result of the state-averaged CASSCF procedure
(the P subspace), while the secondary, first-order interacting
space is formed by the individual CSFs or determinants and
thus is not contracted (the S subspace). It is also helpful to de-
fine the O subspace as a subspace of the CASCI vectors that
are complementary to P, with P⊕O forming the entire CASCI
subspace R, and O⊕S forming the subspace Q, as shown in
Fig. 1.

The derivation of master equations of MCQDPT can be
found in Ref. 17. Traditionally, the total Hamiltonian is split

FIG. 1. Illustration on various subspaces and partitioning used throughout
the paper.

into a zero-order Hamiltonian H0 and a perturbation V:

H = H 0
MCQDPT + V . (1)

The model Fock-like operator F :

F = Const +
∑
pqσ

f pqa+
pσ aqσ δpq , (2a)

used to define the zero-order Hamiltonian H 0
MCQDPT is diago-

nal:

F̂ = Const +
∑
pσ

εpa+
pσ apσ . (2b)

Here, indices p and q run over set of all MOs, σ is the spin
variable, Const is an arbitrary fixed constant, and εp are the or-
bital energies. As stated in Ref. 17, H 0

MCQDPT is identical to F̂ .
The zero-order energy of an arbitrary CSF B is given by

E0
B = 〈B|F̂ |B〉 = Const +

∑
i

ni (B)εi , (3)

where index i runs over all orbitals occupied in CSF B and
ni are the corresponding occupation numbers. The zero-order
energy of any CI vector β with CI expansion coefficients Cβ

B
is then (the so-called barycentric formula63)

E0
β = H 0

ββ = 〈β|F̂ |β〉 = Const +
∑

B

∣∣Cβ

B

∣∣2
E0

B . (4)

The resolvent operator for S subspace RS, as defined in
Ref. 17, is

〈I |(RS A)|J 〉 = 〈I |S(RS A)P|J 〉

=
{

1
E0

J −E0
I
〈I | A |J 〉 , I ∈ S, J ∈ P

0, otherwise
(5)

and similarly for the Q subspace.
The expressions for the effective Hamiltonian in the low-

est orders of PT are

〈α|H (0)
e f f |β〉 = E0

αδαβ, (6)

〈α|H (0+1)
e f f |β〉 = EMCSCF

α δαβ, (7)

〈α| H (2)
e f f |β〉 = 1

2
〈α| V (RS V ) |β〉 + H.c., (8)

where α and β denote CASCI eigenvectors belonging to
model space.

However, there is a very important point to be mentioned,
namely, the exact form of H 0

MCQDPT is not actually the one
given by Eq. (2b), but is rather as follows.

The PP and OO blocks of H 0
MCQDPT are diagonal and

have the following form:

H 0
P PMCQDPT =

∑
α

|α〉〈α|F̂ |α〉〈α|, (9a)

H 0
O OMCQDPT =

∑
α′

|α′〉〈α′|F̂ |α′〉〈α′|, (9b)
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where summation runs over CI vectors α in the model space
for PP block (Eq. (9a)) and over CI vectors α′ in the comple-
ment of the model space in CASCI space for OO block (Eq.
(9b)). The SS block is indeed as stated

H 0
SSMCQDPT = F̂SS. (10)

All other blocks of H 0
MCQDPT are zero; in particular, PO, OP,

SP, and PS blocks are zero. This is evident from the expres-
sion for the resolvent used in MCQDPT (Eq. (5)), as well
as from the explicit expressions for matrix elements of the
second-order effective Hamiltonian (Eqs. (38) and (39) of
Ref. 17). Moreover, if we limit ourselves to the second or-
der of PT obeying Eqs. (8) and (5), it is sufficient to define
only PP (Eq. (9a)), SS (Eq. (10)), OP, PO, SP, and PS (ze-
ros) blocks of H 0

MCQDPT; while the OO, SO, and OS blocks
can be arbitrary. It is worth noting that essentially the same
form of H0 was used in the context of MS-MR-PT in the pi-
oneering work by Spiegelmann and Malrieu.64 Similar forms
of the “restriction” of a model operator onto model space (Eq.
(9)) are used in the MS-CASPT2 (Eqs. 20–23 of Ref. 24) and
QD-NEVPT2 (Eqs. 15 and 16 of Ref. 25) theories as well.

Upon selecting the interacting subspace and obtaining a
formal expression for PT series, one needs a way to uniquely
define H0 to complete the construction of the particular MS-
MR-PT theory. In the case of MCQDPT this is equivalent to
the definition of F̂ , that is, of orbitals and orbital energies.
MCQDPT typically employs semi-canonical Fock orbitals,
which diagonalize blocks of the effective Fock operator yet
leaving the solutions of MCSCF equations invariant. The
corresponding eigenvalues are used as the orbital energies.
The effective Fock operator itself is obtained using closed-
shell Hartree-Fock-like expression with the first order density
matrix taken as the weighted average of the density matrices
for selected subset of CI roots spanning the model space.
The interesting modification of this scheme known as IVO-
MCQDPT265–67 replaces semi-canonical MCSCF orbitals by
improved virtual orbitals (IVO) and MCSCF procedure by
CASCI in the basis of these orbitals (IVO-CASCI).68, 69

The particular choice of interacting space and zero-order
Hamiltonian in MCQDPT theory results in a H0 that is fully
diagonal in P, O, and S subspaces. The attractive consequence
of this feature is a very simple expression for the resolvent
(Eq. (5)) that eliminates any need to solve system(s) of lin-
ear equations. Instead, the second-order effective Hamilto-
nian is expressed as the direct sum of different contributions
corresponding to each particular class of diagrams, with en-
ergy denominators of a very simple structure (Eqs. (38) and
(39) of Ref. 17). This opens a way to a very efficient im-
plementation of MCQDPT2 as was shown in70, 71 and is im-
plemented within the FIREFLY (formerly, the PC GAMESS)
quantum chemistry package,72 which is partially based on
the GAMESS (US) (Ref. 73) source code. In particular, the
so-called resolvent fitting approach is computationally very
efficient.71 The current implementation allows MCQDPT2
calculations of systems with active spaces up to several mil-
lions of CSFs and with the overall number of molecular or-
bitals up to 2000–3000 to be routinely performed on a stan-
dalone single-CPU workstation or desktop computer.

However, H 0
MCQDPT does not have any well-defined al-

gebraic transformation properties with respect to transforma-
tions of basis within the model space. Moreover, it is evident
that for any non-trivial model space H 0

MCQDPT is actually a
many-particle operator; and hence, the perturbation is also
artificially made to be a many-particle operator rather than
the two-particle one as would naturally expect. These two
points apply equally to MS-CASPT2 and QD-NEVPT2 theo-
ries. More precisely, MCQDPT results in perturbation being
a many-particle operator in the R subspace, MS-CASPT2 re-
sults in perturbation being a many-particle operator in both
R and S subspaces, while QD-NEVPT2 results in perturba-
tion being a many-particle operator in the S subspace. It is
worth noting that both MS-CASPT2 and QD-NEVPT2 ap-
ply internal contraction and a multi-partitioning scheme by
Zaitsevskii and Malrieu74 which introduce an additional
source of non-invariance into these theories (as was pointed
out by anonymous Referee, the redefinition of S subspace as
suggested in Ref. 75 could be in principle used in construction
of invariant form of MS-CASPT2). As will be shown below,
these facts altogether are the source of various difficulties the
above mentioned methods encounter in practical applications
even when being applied to small molecules like ozone76, 77 or
allene.78 In particular, none of these methods have the desired
properties discussed in Sec. II.

For instance, let us assume one holds fixed the num-
ber of CI roots and values of their corresponding weights in
computing the averaged one-particle density matrix that is
used to define the model Fock operator F̂ . In this case, the
effective second-order MCQDPT2 Hamiltonians of progres-
sively decreasing dimension form the trivial sequence with
the n × n effective operator being exactly equal to the (n+1)
× (n+1) operator with the row and column, corresponding to
the (n+1)th extra CI root, being removed. Evidently, there is
no any explicit dependence of the effective Hamiltonian on
the dimension of model space in this approach, as the n × n
effective operator is simply enclosed into (n+1) × (n+1) one.

IV. THE XMCQDPT THEORY

The difference between MCQDPT and XMCQDPT (Ex-
tended Multi-Configuration Quasi-Degenerate Perturbation
Theory) is the choice of the H0 operator. More precisely,
XMCQDPT employs H0 that is much closer to the model
operator F̂ given by the Eq. (2) above. Let us analyze first
the explicit expressions for various blocks of H0 used within
XMCQDPT framework. Unless explicitly stated otherwise,
throughout this section we assume that the model operator F̂
is diagonal and is defined by the Eq. (2b).

As the SS block is formed by the individual CSFs, the
SS part of H0 is diagonal and is given by Eq. (3). Similarly,
the RS and SR blocks are zero. However, the RR part has
a nontrivial structure, namely, for two arbitrary normalized
vectors α and β belonging to the P subspace, the expression
for matrix elements of H0 is

H 0
αβ = 〈α|H 0|β〉 = 〈α|F̂ |β〉 =

∑
B

Cα+
B Cβ

B E0
B . (11)
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Hence, unlike MCQDPT, the PP block of H0 is evidently non-
diagonal in the basis of CASCI eigenvectors.

To uniquely define H0, we now need to define OO,
PO, and OP blocks. There is freedom how this can be
done. The simplest form of the theory corresponds to the
OO block defined by Eq. (9b), with PO and OP blocks
being exactly zero (XMCQDPT-I approach). Alternatively,
to be more consistent, we can use Eq. (11) to define the
OO block of H0, once again with fully decoupled P and O
spaces (XMCQDPT-II). Evidently, at the second order of PT,
XMCQDPT-I and XMCQDPT-II result in the same expres-
sion for the second-order effective Hamiltonian (Eqs. (12)–
(15) below). Overall, the XMCQDPT-II approach seems to be
the preferred formulation of XMCQDPT. The present work
is focused on XMCQDPT2 which is the second order for-
mulation of XMCQDPT-I and II. Alternative variants of the-
ory, based on ideas similar to GVVPT2 theory by Khait,
Song, and Hoffmann79 and RMS approach by Staroverov and
Davidson,80 will be reported elsewhere.

As the PP block of H0 is non-diagonal, the formal work-
ing equations of XMCQDPT are more complicated than those
of MCQDPT, even at the second order of PT. In the case of
XMCQDPT2, the only important non-diagonality is that of
the PP block of H0. It can be easily shown that XMCQDPT2
is defined by the following equations (adopting Van Vleck-
style notations):

H (0)
e f f = H (0)

pp , (12)

H (1)
e f f = Vpp, (13)

H (2)
e f f = 1

2

[
Hpsv1 + v+

1 Hsp
]
, (14)

where v1 is defined by the system of linear equations:

Hsp + H 0
ssv1 = v1 H 0

pp. (15)

Equations (5)-(7) above can be considered as the special case
of Eqs. (12)–(15) corresponding to the specific choice of H0

pp

within the MCQDPT approach (Eq. (9a)).
Equations (14) and (15) defining H(2)

eff obey the in-
variance property that was formulated in Sec. I. Namely, if
Eq. (15) is satisfied for some v1, then

HspU + H 0
ss(v1U ) = (v1U )

(
U+ H 0

ppU
)

(16)

also holds for any unitary U. Applying U to Eq. (14), one gets

U+ H (2)
e f f U = 1

2

[
(U+ Hps)(v1U ) + (

U+v+
1

)
(HspU )

]
.

(17)
Thus, any unitary transformation of the basis set in the model
space transforms H(2)

eff according to the usual law of transfor-
mation of an arbitrary linear operator.

Since the invariance property is satisfied, the
XMCQDPT2 theory is evidently equivalent to the fully
uncontracted approach provided that the dimension of the
model space is equal to the dimension of the CI space. The
“explicit dependence on the model space extension” property

is also satisfied taking into account the structure of Eqs.
(14)–(15) and the non-diagonal nature of the PP block of H0

in the basis of CI vectors forming the model space. As will
be shown in Sec. VII, XMCQDPT2 results in the dependence
of Heff on the dimension of a model space that approximates
the dependence inherent to exact effective Hamiltonians.

The approximate size-extensivity, the rate of convergence
of the computed XMCQDPT2 energies with respect to in-
crease of the dimension of model space and the continuity
of the potential energy surfaces will be discussed in Secs. V–
VII.

Considered formally, Eq. (15) is the large set of indepen-
dent small (n×n, where n is the dimension of model space)
linear equations defining amplitudes of various excitations.
This looks like a serious deficiency for practical applications
of XMCQDPT2 for the modeling of large systems. However,
one can completely avoid the necessity to solve these equa-
tions explicitly. By taking into account the invariance of the
theory, one can diagonalize H0

pp and use the rotated CI vec-
tors (the so-called intermediate basis) throughout the entire
calculations rather than the original set of CASCI eigenvec-
tors. The eigenvalues of H0

pp define the zero-order energies
of intermediate states, with the resolvent given by the same
formal expression (Eq. (5)) as for MCQDPT2 approach. This
opens a way to a very efficient implementation of XMCQDPT
at second order. In our practical implementation, MCQDPT2
and XMCQDPT2 share virtually the same code with only a
few extra lines of code being specific to XMCQDPT2. The
computational requirements are identical for both methods.

While the described formulation of XMCQDPT2 is com-
putationally efficient, it is not invariant with respect to unitary
transformations within subspaces of inactive orbitals (labeled
by indices i, j in Eq. (18) below), active orbitals (indices k, l)
and external orbitals (indices a, b). Nonetheless, the fully in-
variant generalization of our approach is straightforward and
is based on the model operator F̄ with the following block
structure:

F̄ = Const +
∑
i jσ

f̄i j a
+
iσ a jσ +

∑
klσ

f̄kla
+
kσ alσ+

∑
abσ

f̄aba+
aσ abσ .

(18)
For instance, the invariant definition of H 0

pp and H (0)
e f f is

H (0)
e f f αβ

= H 0
αβ = 〈α|H 0|β〉 = 〈α|F̄ |β〉. (19)

Equation (11) above is the special case of Eq. (19) corre-
sponding to the CASSCF reference states and to the use
of semi-canonical MOs. The generalized formulation of
XMCQDPT2 has the same invariance properties as the un-
derlying MCSCF procedure of general type; however, it is
very inefficient computationally due to necessity in solution
of huge system of linear equation(s). Provided that the diag-
onal ansatz to the active-active block of F̄ is reasonable, one
can use non unitary-invariant formulation of XMCQDPT2 as
an approximation to its fully invariant generalization.
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V. EXAMPLE 1: A CONICAL INTERSECTION IN THE
ALLENE MOLECULE

As has been mentioned above, MCQDPT, MS-CASPT,
and QD-NEVPT2 theories assume the PP block of H0 that is
defined using projectors onto individual CI vectors and does
not have well-defined transformation properties with respect
to the unitary transformation of the model space. This results
in the non-invariant perturbation theories and introduces an
artificial many-particle nature into the perturbation. In con-
trast, XMCQDPT applies H0 resulting in the invariant theory
with balanced perturbation being approximation to the true
two-particle operator on either the P subspace (XMCQDPT-I)
or in the entire R subspace (XMCQDPT-II) and the true two-
particle operator in the S space. A discussion on the impor-
tance of balanced perturbation in PT treatment can be found
in Ref. 13 in the context of NEVPT approach.

It is natural to expect that non-invariance should lead to
significant erratic behavior of the non-invariant theories in the
regions of the molecular geometries where the corresponding
CI vectors undergo rapid change or are not uniquely defined at
all. More precisely, all non-invariant theories are not defined
at the geometries corresponding to conical intersections at the
underlying MCSCF level, and behave badly in the vicinities
of the avoided crossings.

In Example 1, we demonstrate this poor behavior
for MCQDPT2 and two variants of MS-CASPT2 (SS-SR-
CASPT2 and MS-MR-CASPT2) in the vicinity of the Min-
imum Energy Conical Intersection (MECI) point of 11A′ and
21A′ states of the distorted allene molecule. The geometry at
this point is graphically displayed in Fig. 2.

The MECI was located at the State-Averaged Complete
Active Space SCF (SA-CASSCF)(4,4) level of theory using
the GAMESS (US)-style variation of the Dunning-Hays basis
set augmented by a single polarization spherical d-shell on
each carbon atom. The Cs symmetry was enforced on the al-
lene system. The (4,4) active space was formed by three A′

and one A′′ orbitals that results in 12 CSFs in the A′ sub-
space. The MECI geometry, orbitals (depicted in Fig. S1) and
basis set are provided in the supplementary material.51

FIG. 2. The 11A′ – 21A′ MECI geometry of allene molecule shown from
thee different perspectives.

Upon locating the MECI point, two-dimension non-
relaxed surface scans in its vicinity were performed for SA-
CASSCF(4,4) as well as for MCQDPT2, SS-SR-CASPT2
(the originally proposed MS-CASPT224), MS-MR-CASPT2
(the variant of MS-CASPT2 procedure81, 82 that is specific to
MOLPRO (Ref. 83) package) and XMCQDPT2 approaches.
The energies of both crossing states were collected for the
effective Hamiltonians of dimensions 2 × 2, 6 × 6, and 12
× 12. Three chemical core orbitals were excluded from the
correlation treatment. Convergence was not achieved in 6 × 6
and 12 × 12 MS-CASPT2 calculations, even when applying
large values (up to 1.0) of the energy denominators shift.
The default ISA shift of 0.02 was used in MCQDPT2 and
XMCQDPT2 calculations. Nonetheless, it should be noted
that it did not have any serious impact on the results of scans
as compared to the control set of calculations with zero ISA
shift.

The geometry scan variables were defined as follows.
The first variable was the value of C-C-C bend angle. The
second variable corresponded to the simultaneous and equal
change of two C-C-C-H torsion angles for two hydrogen
atoms located on the same carbon atom. Upon changing the
geometry at one of the terminal C atoms, the Cs symmetry
was enforced on the whole molecule. Effectively, the second
variable describes pyramidalization of the terminal C atoms.
The change of each variable covered the range from -10 de-
grees to +10 degrees, with CASSCF MECI point geometry
being the coordinate origin. The step along each variable was
set to 0.25 degrees. The scan grid was formed by 81 points
along each variable, 6561 points overall.

The MOLPRO package was used for SS-SR-CASPT2 and
MS-MR-CASPT2 calculations with its default settings con-
trolling the particular choice of H0 within the CASPT2 ap-
proach. The FIREFLY package was used for SA-CASSCF,
MCQDPT2, and XMCQDPT2 calculations. To avoid any
misleading effects caused by the use of various convergence
thresholds, cutoffs, by numerical noise, and so on, the extra
high accuracy was requested throughout all stages of all cal-
culations.

The calculated absolute values of the energy differ-
ence of two states were then visualized by computing two-
dimensional color-mapped surface plots of 64 iso-surfaces
each. The final results are depicted in Figs. 3–10. As can be
seen, the results of the MCQDPT2 and MS-CASPT2 calcu-
lations are very similar. In particular, surfaces obtained in the
2×2 MCQDPT2 (Fig. 4) and the MS-MR-CASPT2 (Fig. 6)
calculations are virtually the same while the structure of sur-
face obtained using 2×2 SS-SR-CASPT2 approach is slightly
different (Fig. 7). Overall, results are exactly as expected.
There is a singularity at the CASSCF MECI point, and a
rather large area of the entire PES is clearly an artifact of the
results from these approaches lacking any physical meaning
(Figs. 4–7). The artificial distortion of PES tends to increase
upon the extension of the model space (Fig. 5).

In contrast, SA-CASSCF (Fig. 3) and XMCQDPT2
(Figs. 8–10) calculations provide smooth and continuous sur-
faces (naturally, the SA-CASSCF surface has the cusp at
the coordinate origin). Moreover, the results obtained in 6
× 6 XMCQDPT2 calculations (Fig. 9) are virtually the same

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



214113-7 XMCQDPT: The new approach to MS-MR-PT J. Chem. Phys. 134, 214113 (2011)

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

Variable 1

V
a

ri
a

b
le

 2

0

0.006875

0.01375

0.02063

0.02750

0.03437

0.04125

0.04813

0.05500

SA-CASSCF(4,4), NState=2

FIG. 3. Color mapped iso-surface plot of energy separation between of
21A′ and 11A′ states of allene molecule as a function of scan variables.
SA-CASSCF(4,4).

as those for the complete CASCI space of 12 states cor-
responding to the fully uncontracted limit of XMCQDPT2
(Fig. 10).

It should be noted that the existence of some artifacts
on the potential energy surfaces computed within either the
MCQDPT2 or MS-CASPT2 approaches has already been
mentioned in the literature.76, 77 However, to the best of our
knowledge, the present work is the first one that gives the cor-
rect theoretical explanation of these peculiarities.

VI. EXAMPLE 2: THE LIF BENCHMARK

The avoided crossing of neutral and ionic 1�+ states of
LiF molecule near its dissociation limit is usually consid-
ered as one of the standard benchmark tests for any quasi-
degenerate multi-reference theory. This section summarizes
our results for this molecule.
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-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

MCQDPT2, Heff: 12x12, ISA shift=0.02

Variable 1

V
a
ri
a
b
le

 2

0

0.005000

0.01000

0.01500

0.02000

0.02500

0.03000

0.03500

0.04000

FIG. 5. Color mapped iso-surface plot of energy separation between of 21A′
and 11A′ states of allene molecule as a function of scan variables. MCQDPT2
with 12 states.

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

MS-MR-CASPT2, Heff: 2x2

Variable 1

V
a
ri
a
b
le

 2

0

0.008750

0.01750

0.02625

0.03500

0.04375

0.05250

0.06125

0.07000

FIG. 6. Color mapped iso-surface plot of energy separation between of 21A′
and 11A′ states of allene molecule as a function of scan variables. Two-state
MS-MR-CASPT2.

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

Variable 1

V
a
ri
a
b
le

 2

0

0.008750

0.01750

0.02625

0.03500

0.04375

0.05250

0.06125

0.07000

SS-SR-CASPT2, Heff: 2x2

FIG. 7. Color mapped iso-surface plot of energy separation between of 21A′
and 11A′ states of allene molecule as a function of scan variables. Two-state
SS-SR-CASPT2.

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



214113-8 Alexander A. Granovsky J. Chem. Phys. 134, 214113 (2011)

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

Variable 1

V
a

ri
a

b
le

 2

0

0.008750

0.01750

0.02625

0.03500

0.04375

0.05250

0.06125

0.07000

XMCQDPT2, Heff: 2x2

FIG. 8. Color mapped iso-surface plot of energy separation between of 21A′
and 11A′ states of allene molecule as a function of scan variables. Two-state
XMCQDPT2.

Similar to Angeli et al.,25 we adopt the same
Li(9s5p)/[4s2p], F(9s6p1d)/[4s3p1d] basis set employed by
Bauschlicher and Langhoff84 in their full CI (FCI) study on
LiF. However, there are several important differences in our
computational methodology as well as in the choice of ref-
erence calculations. The zero-order wavefunctions were ob-
tained using the same SA-CASSCF(6,6) procedure with the
same choice of active space and with averaging over two 1�+

states with equal weights. However, unlike Angeli et al.,25 we
do not consider reported FCI results84 as a proper reference
for comparison. Indeed, the FCI wavefunction includes exci-
tations that do not belong to the first-order interacting space.
Next, because there are no more than eight electrons in the
correlation treatment, it is natural to expect that the overall
effect due to missed unlinked quadruple excitations in multi-
reference singles and doubles CI (MRSDCI) is small. There-
fore, it is more consistent to consider the second and third
orders of MS-MR-PT theories based on the CAS reference
space as approximations to MRSDCI rather than to the FCI

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

XMCQDPT2, Heff: 6x6

Variable 1

V
a
ri
a
b
le

 2

0

0.008750

0.01750

0.02625

0.03500

0.04375

0.05250

0.06125

0.07000

FIG. 9. Color mapped iso-surface plot of energy separation between of 21A′
and 11A′ states of allene molecule as a function of scan variables. Six-state
XMCQDPT2.

and hence to use MRSDCI energy curves for comparison pur-
poses.

Taking this into account, we did not try to mimic the FCI
calculations reported in Ref. 56 as closely as possible, e.g.,
unlike Angeli et al.,25 we did not freeze three sigma orbitals
forming SA-CASSCF(6,6) core space at SA-CASSCF(2,2)
level, but rather allowed them to completely relax. Moreover,
as the true chemical core is formed by only two of these or-
bitals, the third one was included both in PT and MRSDCI
calculations. This seems to be an especially important point
since otherwise there would not be any double-occupied inac-
tive orbitals in the PT treatment, and thus calculations would
lack several important classes of excitations.

All calculations were based on canonicalized
SA-CASSCF(6,6) orbitals. MRSDCI calculations were
performed using occupation restricted multiple active spaces
(ORMAS) (Refs. 85 and 86) code that is the part of the
GAMESS (US) package. SS-SR-CASPT2 and MS-MR-
CASPT2 were performed using MOLPRO, while the FIREFLY

package was used for MCQDPT2 and XMCQDPT2 calcu-
lations. The model space was formed by the two states of
interest.

The results of our calculations are presented on Figs. 11
and 12. The SS-SR-CASPT2 potential energy curves (PECs)
and energy splitting curve (ESC) are evidently in the worst
agreement with MRSDCI data, while the MS-MR-CASPT2
PECs and ESC are a significant improvement. The energy
splitting curves are very similar for both MS-MR-CASPT2
and MCQDPT2 and are reasonably close to that of MRSDCI.
Nonetheless, there are significant artifacts on the SS-SR-
CASPT2, MS-MR-CASPT2 and especially MCQDPT2
PECs and ESCs in the vicinity of the avoided crossing of
underlying CASSCF at internuclear distance of ∼8.5 Bohr.

XMCQDPT2 gives artifacts-free PECs and ESC, which
are in the best agreement with the MRSDCI PECs and
ESC. The XMCQDPT2 value of energy splitting at the
avoided crossing point is also best when compared with the
MCQDPT2 and MS-MR-CASPT2 results, although the
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XMCQDPT2 with 12 states (fully uncontracted limit).
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FIG. 11. Potential energy curves (PECs) of the LiF molecule near the
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MRSDCI PECs are given as reference. PECs were intentionally left non-
shifted to common dissociation limit.

position of the minimum is slightly shifted (by ca. 0.25
Bohr as compared with MRSDCI). The absolute values
of off-diagonal elements of half-sum symmetrized effec-
tive Hamiltonians at the internuclear separation of 11 Bohr
are 0.00341 (SS-SR-CASPT2), 0.00317 (MS-MR-CASPT2),
0.00329 (MCQDPT2) and 0.00240 hartree (XMCQDPT2).
Following the referee’s suggestion, computed spectroscopic
constants of LiF molecule are given in Table SI of supple-
mentary materials.51

In multireference electronic structure calculations for
mixed electronic states, the relative contributions of different
reference configurations tend to differ substantially between
the reference SA-CASSCF wavefunctions and the final cor-
related wavefunction. For instance, in the example above the
position of avoided crossing point between neutral and ionic
PECs of 1�+ states of LiF molecule differs by ca. 3 Bohr
between SA-CASSCF and MRSDCI calculations. Obviously,
in the region between SA-CASSCF and correlated crossing
points, the quality of zero-order wavefunctions obtained us-
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FIG. 12. Interstate separation in the LiF molecule near avoided crossing area
computed using different MS-MR-PT approaches. MRSDCI curve is given as
reference.

ing SA-CASSCF procedure degrades. This can be a serious
issue for non-invariant MS-MR-PT approaches defined using
projectors, which can result in incorrect description of inter-
state mixing and PESs. In contrast, situation is much better
for invariant theories such as XMCQDPT2. Indeed, the fi-
nal correlated states depend only on the subspace spanned
by zero-order wavefunctions (i.e., on the model space) rather
than on the zero-order wavefunctions themselves. Therefore,
if the number of physically important CSFs shared by zero-
order SA-CASSCF states is less or equal to the dimension
of model space, one can a priori expect better and more bal-
anced description of the interstate mixing and PESs by in-
variant MS-MR-PT theories as compared with non-invariant
formulations.

VII. EXAMPLE 3: 11A1 AND 21A1 STATES OF
CIS-1,3-BUTADIENE

As has been already mentioned, we consider convergence
of state energies as a function of the dimension of the model
space as a very important requirement for any correctly
formulated MR-MS-PT. The approximate size-consistency,
especially exact or approximate core-separability, is another
desirable property. Here we address these properties in the
context of the XMCQDPT2 approach.

MCQDPT2 is neither size-consistent nor core-separable.
In contrast, different variants of CASPT2 as well as NEVPT2
are exactly core-separable; moreover, NEVPT2 is exactly size
consistent and strictly separable. While analysis of their MS
counterparts is more complicated, both theories are at least
exactly core-separable.

In the special case of a one-dimensional model space,
XMCQDPT2 is completely equivalent to the MR-MP2
approach.4 Due to the structure of its energy denomina-
tors, MR-MP2 is neither exactly size-consistent, nor core-
separable. This can be easily verified by performing test com-
putations on simple model systems like the Be2 molecule at
large internuclear distances. However, the deviations from ex-
act size-consistency are typically small.

Keeping these properties of MR-MP2 in mind, it is log-
ical to expect that XMCQDPT2 should not be in general ex-
actly size-consistent or core-separable as well. This is indeed
the case. However, we mention as an important fact that the
fully uncontracted limit of XMCQDPT is an exactly size-
consistent and separable theory through the fourth order of
Van Vleck PT expansion.40 Assuming that the convergence
of energies with increase of the dimension of model space is
reasonably fast, XMCQDPT2 should be approximately size-
consistent and core-separable for low-lying states even for the
quite modest dimensions of effective Hamiltonians, with size-
inconsistency errors rapidly decreasing upon the extension of
the model space. These properties of XMCQDPT2 are inves-
tigated below in comparison with MCQDPT2 using the inter-
esting testcase of 1 1A1 and 21A1 states of cis-1,3-butadiene.
As the 21A1 state is of strongly multireference character, we
consider this system as a good test for any MS-MR-PT.

The geometry of cis-1,3-butadiene was optimized at
the MP2(frozen core)/cc-pVTZ in C2v symmetry group. The
equilibrium geometry results are available as part of the
supplementary material.51 Located equilibrium structure was
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used throughout all subsequent calculations. The PT2 calcu-
lations on energies of the 11A1 and 21A1 states of cis-1,3-
butadiene were performed using standard basis set cc-pVDZ,
cc-pVTZ, cc-pVQZ, as well as cc-pV5Z(-h) (h shell was re-
moved because current versions of FIREFLY do not support h
shells). Four chemical core orbitals were excluded from the
PT2 treatment. All PT2 calculations employed recommended
ISA energy denominators shift of 0.02.

As the 21A1 state is well known to be of valence type,87, 88

the minimal π -valence active space (depicted in Fig. S1)51

was used for SA-CASSCF procedure, and the Rydberg-type
orbitals were not added to the basis sets. Thus, only 12 CSFs
form the 1A1 subspace of CASSCF(4,4) Hamiltonian. The
two lowest roots of 1A1 symmetry were state-averaged with
equal weights both in SA-CASSCF and in all PT2 calcula-
tions regardless of the dimension of the model space. As all
four active orbitals have significantly non-trivial occupation
numbers, we consider this averaging to be a well suited for
the definition of zero order states, orbitals and orbital energies
aimed to describe 11A1 and 21A1 states within the MR-MS-
PT approach. Good description of higher-energy states would
require averaging over larger number of states; however, this
was not the goal of our study. Yet, when entering effective
Hamiltonians, higher-energy states allow efficient relaxation
of 11A1 and 21A1 states within CASCI space and improve
their overall description. Indeed, CASSCF usually tends to
converge to solutions that are too delocalized in the space
of CI coefficients, so additional states in the model space are
needed to eliminate this deficiency at XMCQDPT2 level.

The results of our calculations are shown in Figs. 13 and
14 as a function of the dimension of effective Hamiltoni-
ans. The dependence on the basis set is demonstrated in Figs.
S2–S12. Here, XMCQDPT2′ and MCQDPT2′ acronyms are
used for modified XMCQDPT2 and MCQDPT2 calculations
that apply the MP2-like expression for double excitations
from double occupied inactive orbitals to external MOs. This
eliminates the dominant contribution violating exact core-
separability and makes both theories approximately core-
consistent. However, as can be easily seen, this modifica-
tion is not really necessary for XMCQDPT2 as it results in
virtually the same state energies as the exact XMCQDPT2,
surprisingly even for very small dimensions of the model
spaces. This allows us to conclude that XMCQDPT2 is al-
most exactly core-consistent, at least for this specific model
system, and we expect this property to hold for other sys-
tems as well. On the other hand, this modification clearly has
a very significant impact on the computed MCQDPT2 ener-
gies and seriously affects the 11A1 – 21A1 excitation energy
as well.

In the case of XMCQDPT2, we can see in Figs. 13 and
14 and S2–S10, the energies of both states are smooth and al-
most monotonic functions of the dimension of model space n,
saturating at n = 7. This behavior is very encouraging and is
common for all basis sets we used. Moreover, energies of both
states become even smoother for the larger cc-pVQZ and cc-
pV5Z(-h) basis sets. Analysis of the corresponding eigenvec-
tors of effective Hamiltonians shows that the seventh CASCI
state is the last one that significantly contributes to the pro-
jection of the perturbed 11A1 and 21A1 states onto the model
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FIG. 13. Computed PT2/cc-pV5Z(-h) energies of 11A1 and 21A1 states of
cis-1,3-butadiene as the functions of the dimension of a model space. Lower
panel: 11A1 state. Upper panel: 21A1 state.

space. At the same time, there are large changes in the state
energies in the low model space dimension regions of both
MCQDPT2 and MCQDPT2′ energies, and there is no satu-
ration but rather a constant steady decrease of energies, up
to n = 12. The latter can be easily explained taking into ac-
count the variational principle and the fact that with the state-
averaging procedure we used, MCQDPT2 and MCQDPT2′

lead to the (n+1) × (n+1) effective Hamiltonian being sim-
ply the augmented version of the n × n one.

Given these results, we conclude that effective
Hamiltonians of increasing dimension computed within
the XMCQDPT2 framework tend to approximate the depen-
dence on the dimension of a model space inherent to exact
effective Hamiltonians.

Examination of the effective Hamiltonians computed
within the MCQDPT2 approach reveals multiple off-
diagonal elements of unrealistically large magnitude. Use
of MCQDPT2′ instead of MCQDPT2 decreases their mag-
nitude, sometimes by a factor of 1.5. However, on aver-
age they are still severely overestimated as compared to the
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FIG. 14. Computed PT2/cc-pV5Z(-h) 11A1 to 21A1 vertical excitation ener-
gies of cis-1,3-butadiene as the functions of the dimension of a model space.
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XMCQDPT2 results. These overestimated off-diagonal ele-
ments cause observed changes and oscillations. The overes-
timation of the off-diagonal elements within the MCQDPT2
and MS-CASPT2 approaches has already been documented in
the literature by several authors.89–97 We postpone the discus-
sion on the nature of this overestimation to Sec. VIII. How-
ever, we note in passing that the absolute energies of indi-
vidual states (or, more generally, PES segments) computed
within the MCQDPT2 approach seem to have little, if any,
physical sense, at least for large effective Hamiltonians.

Let us now examine the behavior of the 11A1 – 21A1 ex-
citation energies. Again, XMCQDPT2 results in excitation
energies being almost smooth and monotonic functions of
the model space dimension showing only minor variations
upon reaching n = 7. The excitation energy curves become
smoother as the quality of the basis set improves. The ex-
citation energies obtained using cc-pVDZ basis set are sig-
nificantly overestimated being compared with our results for
other basis sets; so we do not recommend use of this basis
set in any high-level XMCQDPT2 calculations. On the other
hand, results for cc-pVTZ, cc-pVQZ, and cc-pV5Z(-h) basis
sets are all similar. In particular cc-pVQZ and cc-pV5Z(-h)
results are virtually the same while cc-pVTZ somewhat over-
estimates excitation energy.

As expected, MCQDPT2 gives oscillating estimates
of excitation energy up to n = 7. At larger n there are
only small to modest oscillations near some average value.
Nevertheless, the curves are not as smooth compared with
those of XMCQDPT2 curves and do not seem to exhibit
a tendency to become smoother as the quality of basis set
improves. Once again, there is a considerable difference be-
tween the MCQDPT2 and MCQDPT2′ curves. MCQDPT2′

tends to attenuate oscillations, although is not able to remove
them completely in the initial region. It also shows much
better agreement with converged and basis-set saturated
XMCQDPT2 results.

The converged and nearly basis-set saturated
XMCQDPT2 estimate of the 11A1 – 21A1 excitation
energy in cis-1,3-butadiene is ca. 6.12–6.15 eV (Fig. S12),
while the unperturbed SA-CASSCF/cc-pV5Z(-h) value is
6.535 eV. Since the exact experimental excitation energy is
not known,87, 88, 98–100 the XMCQDPT2 estimate can be com-
pared with 6.04 eV CASPT2-based result by Serrano-Andrés
et al.88 and 6.13 eV CI4 + Q result by Cave and Davidson.87

VIII. DISCUSSION AND CONCLUDING REMARKS

As has been mentioned previously, MCQDPT2 and
MS-CASPT2 tend to overestimate off-diagonal elements of
effective Hamiltonians.89–97 This is true, although to a lesser
extent, for MCQDPT2′ as well. This can be explained as
follows.

One can consider MCQDPT2 as the approximation to
XMCQDPT2 which completely neglects the off-diagonal
elements of H0 in the CASCI space. The quality of this
approximation depends on the magnitude of the neglected
off-diagonal elements. If the zero-order interaction of states
forming the model space is small, these two theories should be
in the close agreement. However, as soon as zero-order inter-

action increases, MCQDPT2 performance starts to degrade.
For instance, one can a priori expect large zero-order interac-
tions in situations when two or more CI roots share a common
set of leading CSFs, resulting in questionable applicability
of MCQDPT2 as well as of all other non-invariant theories
formulated using projectors onto the model space. The
neglect of off-diagonal terms introduces inaccuracy into both
diagonal and off-diagonal elements of effective Hamiltonians.

One recalls that in the basis of non-rotated CI vectors,
the working equations of XMCQDPT2 (Eq. (15)) are the set
of linear equations of the form:(

H 0
pp − Dλ

)
v̄λ = b̄λ, (20)

with solution

v̄λ = (
H 0

pp − Dλ

)−1
b̄λ, (21)

where Dλ is a diagonal matrix and index λ runs over CSFs
belonging to S subspace. For an arbitrary square matrix A,
let us denote the matrix obtained from A by zeroing all its
off-diagonal elements as [A]. Similarly, {A} denotes the ma-
trix A with all diagonal elements zeroed. The equations for
MCQDPT2 are then

v̄λ,MCQDPT = ([
H 0

pp

] − Dλ

)−1
b̄λ. (22)

Considering off-diagonal elements of matrix H 0
pp − Dλ as

perturbation and taking into account standard arguments of
perturbation theory, one gets the following first-order approx-
imation to the exact inverse of H 0

pp − Dλ:(
H 0

pp−Dλ

)−1

= (([
H 0

pp

]−Dλ

)(
1+([

H 0
pp

]−Dλ

)−1({
H 0

pp

})))−1

= (
1 + ([

H 0
pp

] − Dλ

)−1({
H 0

pp

}))−1([
H 0

pp

] − Dλ

)−1

≈ ([
H 0

pp

]−Dλ

)−1 − ([
H 0

pp

]−Dλ

)−1{
H 0

pp

}([
H 0

pp

]−Dλ

)−1
.

(23)
Using Eq. (23) instead of the exact inverse, one gets

v̄λ ≈ ([
H 0

pp

] − Dλ

)−1
b̄λ − ([

H 0
pp

] − Dλ

)−1{
H 0

pp

}
× ([

H 0
pp

] − Dλ

)−1
b̄λ = v̄λ,MCQDPT − ([

H 0
pp

] − Dλ

)−1

× {
H 0

pp

}([
H 0

pp

] − Dλ

)−1
b̄λ. (24)

The second term of Eq. (24) is therefore the first-order correc-
tion to the MCQDPT2 amplitudes within XMCQDPT2 ap-
proach. The structure of this correction taken together with
Eqs. (14) and (15) allows one to conclude that large off-
diagonal elements h0

αβ of H0
pp result in large systematic errors

in H(2)
eff,αβ elements of H(2)

eff, MCQDPT. Similar arguments can
be applied to other MS-MR-PT theories which neglect off-
diagonal terms, i.e., to MS-CASPT2.

In the case of MCQDPT2′, the leading MP2-like con-
tribution to the correlation energy is treated differently so
it results only in the equal shift of all diagonal elements of
H(2)

eff. Hence, this reduces the accumulated errors in off-
diagonal elements of H(2)

eff, MCQDPT. However, this does not
eliminate errors entirely. For example, for the all-trans pro-
tonated Shiff-base form of retinal molecule (540 MOs: 25
frozen core orbitals, 63 doubly occupied inactive, 12 active
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orbitals, 440 external orbitals), the two-state MCQDPT2/SA-
CASSCF(12,12) treatment at PBE0/cc-pVDZ geometry51 re-
sults in the off-diagonal element of the effective Hamiltonian
equal to 0.0833 hartree, with the difference of diagonal val-
ues of the effective Hamiltonian equal to 0.0763 hartree. The
computed S0-S1 vertical excitation energy is 0.1833 hartree
(249 nm) and is unphysical. MCQDPT2′ gives an off-diagonal
value of 0.0294 hartree that is still severely overestimated,
with a diagonal difference of 0.0744 hartree, resulting in a S0-
S1 vertical excitation energy of 0.0948 hartree (481 nm). XM-
CQDPT2 gives an off-diagonal value of 0.0027 hartree, with
a diagonal difference of 0.0767 hartree, and a S0-S1 vertical
excitation energy of 0.07687 hartree (593 nm). Note that for
MCQDPT2 and MCQDPT2′ (but not for XMCQDPT2), the
diagonal values of Heff are approximations to the state-specific
MR-MP2 energies. The unperturbed SA-CASSCF value of
S0-S1 vertical excitation energy is 0.09935 hartree (458 nm).
Experimentally, the S0-S1 band in the gas phase is broad,
ranging from 450 nm to 650 nm with an essentially flat top
extending from 530 nm to 610 nm.101 In the case of XMC-
QDPT2, there is reasonable agreement with the experimen-
tal data that can be further improved using larger basis sets,
extended model spaces, MP2-optimized geometry, and aver-
aging over thermally available vibrational states.102 Remark-
ably, XMCQDPT2 computations on retinal molecule, includ-
ing all required integral transformation and CI steps, took as
fast as ca. 3250 seconds of wall clock time running on four-
core single CPU Intel Core i7 2600K-based desktop system.

The systematic overestimation of off-diagonals within
MCQDPT2 has been documented previously (2005–
2006).89–91 The development of XMCQDPT was completed
in 2008,96 and initially led to development of the so-called
augmented effective Hamiltonian approach to MCQDPT2
(aug-MCQDPT2, or, more precisely, aug-MCQDPT2′) by
Bochenkova.89–95 This procedure can be considered as the at-
tempt to apply a variation of the stabilization graph technique
to the MCQDPT2′ effective Hamiltonians of sequentially
enlarged dimensions aimed to minimize effects caused
by overestimated off-diagonal elements of the effective
Hamiltonian.

Given our results, and the accompanied analysis, we be-
lieve that at least some, if not most, of the previously reported
problematic MCQDPT2 and MS-CASPT2 cases that were at-
tributed to intruders or interaction with discretized contin-
uum, are probably related to the intrinsic property of these
methods to overestimate off-diagonal coupling. As to real in-
truders, our preliminary experience shows that XMCQDPT2
is somewhat less prone to intruders than MCQDPT2 and
MS-CASPT2. The sensitivity of XMCQDPT2 to intruders
will be examined in details in another study.

Over the last decades, minimum energy conical intersec-
tions (MECIs) and associated dynamics have been attracting
constantly growing attention of the Scientific Community. At
present, MECIs are typically located using the SA-CASSCF
procedure. It appears that for large molecular systems, both
MCQDPT2 and MS-CASPT2 are not suitable for locating
conical intersections103, 104 because of the uncertainty in the
off-diagonal elements of corresponding effective Hamiltoni-
ans. However, the possibility of locating MECI points using

high-level correlated methods appears attractive. With this
in mind, two further developments seem to be very impor-
tant. The first is the formulation and development of the ef-
ficient analytical gradient procedure for XMCQDPT2. The
second is the “XMCQDPT-like” reformulation of the existing
MS-CASPT2 and QD-NEVPT2 approaches.

To summarize, we formulated and implemented the new
approach to MS-MR-PT, called XMCQDPT, which is a multi-
state generalization of MR-MP2 based on the non-diagonal,
invariant choice of zero-order Hamiltonian inside the model
space. This approach possesses several unique properties as
discussed above. It is an interesting, useful, and attractive tool
for high level modeling of the electronic properties of small
to large molecular systems. After its development and imple-
mentation in 2008, this method was made routinely avail-
able for FIREFLY users, and has already been successfully
applied by some of them to the modeling of challenging
systems.105–111
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